Всё, что движется. Прогулки по беспокойной Вселенной от космических орбит до квантовых полей - [8]
Высказывание, что движение сохраняется, в точной формулировке звучит как «количество движения сохраняется» в отсутствие внешних воздействий (сил). Если же какие-то силы действуют, то количество движения меняется, и, главное, меняется быстро или медленно в зависимости от того, велика ли сила. У каждого изменения есть свой темп (если это не приводит к недоразумениям, можно говорить «скорость изменения»). И вот темп изменения количества движения как раз равен полной действующей силе, сообщает нам Ньютон. Просто равен. Нет никакой возможности сосчитать, сколько раз это высказывание применялось для описания мира. В нем содержится указание на причину: это сила. Сила тяги двигателей самолета, разгоняющегося для взлета, определяет, как быстро меняется количество движения самолета – что в салоне ощущается как эффект прижимания к спинке кресла; в горизонтальном направлении на самолет действуют еще и силы сопротивления (рис. 1.4), и полный баланс этих сил определяет изменение – нет, не скорости, а количества движения; именно поэтому столь важна взлетная масса («взлетный вес») самолета: одна и та же прибавка к количеству движения для самолета, в полтора раза более тяжелого, означает в полтора раза меньшее увеличение скорости. Сила, действующая здесь и сейчас, «не отвечает» за итог – за то, что получится, скажем, в конце взлетно-посадочной полосы. Она отвечает только за то, быстро или нет меняется количество движения здесь и сейчас.
Рис. 1.4. Силы, действующие на самолет во время разгона
Сила говорит количеству движения, как ему изменяться
Ньютон не мог думать о решении задачи про взлетающий самолет, как не мог думать и о решении своих уравнений на компьютере. Я затрудняюсь даже сказать, о какой из этих двух тем он «не мог думать в большей степени». Но современные компьютеры определяют, как будут развиваться события при взлете самолета или ракеты, действуя в точности так, как это наверняка представлял себе Ньютон: если в первую миллисекунду после старта действует определенная сила, то приобретенное количество движения – это и есть та самая сила, умноженная на прошедший малый интервал времени (ту самую миллисекунду). В следующую миллисекунду сила тяги может измениться, а кроме того, появляется сила сопротивления со стороны воздуха. Две силы действуют в противоположных направлениях, одну надо вычесть из другой, а результат умножить снова на выбранный интервал времени длиной в миллисекунду, и так мы узнаем, сколько же количества движения прибавилось за вторую миллисекунду. Потом мы точно так же поступаем с третьей миллисекундой и не забываем суммировать все накопленные прибавки к количеству движения. Если нам нужна особая точность (и уж во всяком случае, если речь идет о взлете ракеты), то надо вспомнить, что по мере израсходования топлива уменьшается масса, поэтому пересчет количества движения в набранную скорость надо производить внимательно, помня, что и масса меняется от миллисекунды к миллисекунде. Например, ракета-носитель «Сатурн V» сжигала – и выбрасывала из себя – 15 кг смеси из горючего и окислителя в миллисекунду, т. е. 15 тонн в секунду.
Поведение – результат сложения причин
Стратегия, позволяющая узнать, что получится, т. е. делать предсказания о том, что будет, состоит в суммировании накопленных прибавок. Компьютер буквально суммирует накопленное по малым интервалам времени, а Ньютон (изобрел и) широко применял математический метод такого суммирования. Он называется интегрированием и не требует, чтобы разбиение на малые интервалы времени выполнялось буквально: такое разбиение встроено в сам метод, причем наилучшим возможным способом. Дело в том, что если для самолета миллисекунда – это малый интервал времени в том смысле, что действующие силы (да и масса) практически не успевают измениться, то для других процессов (например, горения или взрыва) расчет с шагом в миллисекунду даст неправильный результат, потому что за это время многое успевает измениться, и интервал времени надо выбирать еще короче. Вся идея интегрирования состоит в том, что интервал «уже взят» меньше любого, который вы в состоянии назвать. Поэтому интегрирование как математическая процедура точнее любого вычисления на компьютере. Другое дело, что результат интегрирования далеко, далеко не всегда удается выразить в обозримых терминах (т. е. используя привычные функции): хотя задача поставлена математически точно, записать точный ответ мы часто оказываемся не в силах. В таких случаях или изобретают приближенные способы осуществить математическую процедуру, или, конечно же, «сажают задачу на компьютер», т. е. применяют одну из многочисленных программ, которые, да, суммируют малые накопления.
Промежуточный итог: Ньютон не считал (и с тех пор никто, в общем, не считает), что законы природы могут описывать картину целиком. Кеплер со своими тремя абсолютно верными законами, в которых констатировалось поведение в целом, остался в прошлом. Законы Ньютона говорят, как причины (силы) определяют темп изменения количества движения. А дальше уж что получится путем «накопления», то получится – или на компьютере, или с помощью специальной математической процедуры. Если не удается ни то ни другое, то это наша проблема, а не проблема природы, в которой все «само себя суммирует» по мере того, как течет время: разнообразные причины постоянно действуют, накапливаемые изменения, в свою очередь, рождают новые причины, которые снова влияют, и так далее; время – это и есть способ упорядочения действующих причин и накапливающихся следствий.
Книга посвящена жизни и творчеству выдающегося советского кристаллографа, основоположника и руководителя новейших направлений в отечественной науке о кристаллах, основателя и первого директора единственного в мире Института кристаллографии при Академии наук СССР академика Алексея Васильевича Шубникова (1887—1970). Классические труды ученого по симметрии, кристаллофизике, кристаллогенезису приобрели всемирную известность и открыли новые горизонты в науке. А. В. Шубников является основателем технической кристаллографии.
Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.
Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.
«Занимательное дождеведение» – первая книга об истории дождя.Вы узнаете, как большая буря и намерение вступить в брак привели к величайшей охоте на ведьм в мировой истории, в чем тайна рыбных и разноцветных дождей, как люди пытались подчинить себе дождь танцами и перемещением облаков, как дождь вдохновил Вуди Аллена, Рэя Брэдбери и Курта Кобейна, а Даниеля Дефо сделал первым в истории журналистом-синоптиком.Сплетая воедино научные и исторические факты, журналист-эколог Синтия Барнетт раскрывает удивительную связь между дождем, искусством, человеческой историей и нашим будущим.
Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.