Время и календарь - [8]
Для большей точности в поле зрения пассажного инструмента натягивается вертикальная нить, которая должна обозначать меридиан. Полднем (истинным) считается момент, когда центр Солнца пройдёт через нить. Но этот момент трудно определить точно, так как на диске Солнца центр не отмечен. Поэтому предпочитают определять время по наблюдениям прохождения через меридиан не Солнца, а звёзд, которые в трубу видны точками.
На обсерваториях употребляется теперь почти исключительно этот способ. Он основан на том, что каждая звезда проходит через меридиан в строго определённый свой момент звёздного времени (как было объяснено в главе 2-й). Для многих звёзд эти моменты теперь точно определены. Поэтому достаточно пронаблюдать в пассажный инструмент прохождение такой звезды через меридианную нить, и астроном будет знать звёздное время в момент прохождения звезды. Это время он и поставит на особых часах, которые идут по звёздному времени, то-есть уходят вперёд против обыкновенных часов на 3 минуты 56 секунд в сутки.
Определив звёздное время, астроном вычисляет среднее солнечное время и ставит его на обыкновенных часах. Это будет местное время обсерватории; его затем легко перевести в поясное или декретное время, по которому живёт население.
Мы дали здесь только общий план определения времени на обсерватории. В действительности дело происходит гораздо сложнее, так как невозможно сделать абсолютно точный инструмент и невозможно произвести наблюдение с абсолютной точностью. Поэтому момент прохождения звезды через меридиан мы всегда определим с некоторой ошибкой. Чтобы по возможности уменьшить эту ошибку, помещают в поле зрения не одну нить, а целый ряд их на точно известных расстояниях друг от друга, и отмечают прохождение звезды через каждую из нитей; наблюдают не одну звезду, а несколько, не менее 6–8; наконец, применяют особую, отчасти автоматическую, регистрацию моментов прохождения звезды через нити и т. д.
В результате этих ухищрений на обсерваториях удаётся определять время или, как обычно говорят, «поправку часов», с чрезвычайно большой точностью, именно, с возможной ошибкой не более двух-трёх сотых долей секунды! Вот за такую величину, почти неуловимую человеческими чувствами, может ручаться астроном при определении поправки своих часов.
Но недостаточно определить время, надо уметь его сохранить до следующего астрономического определения. Поэтому на обсерватории должны быть особенно точные часы, за показание которых можно было бы ручаться и в те дни, когда определение времени по звёздам не производится.
Астрономические часы по своему устройству похожи на обычные стенные часы с маятником, без боя, но только все части их механизма сделаны чрезвычайно тщательно.
Особенное внимание при изготовлении часов обращают на маятник: ведь часы идут правильно только в том случае, если маятник качается всё время с одинаковой скоростью. А так как изменение температуры в воздушного давления сильно влияет на качание маятника, то главные часы обсерватории обыкновенно устанавливают в таком помещении, где температура мало меняется, например, в подвале; вдобавок их заключают ещё под закупоренный стеклянный колпак, внутри которого поддерживается постоянное воздушное давление (рис. 9).
Рис. 9. Астрономические часы под стеклянным колпаком.
Понятно, что хорошие часы надо оберегать от сотрясений и как можно реже трогать. Вот почему обсерваторские часы, к удивлению посетителей нередко показывают неверное время. Астроном довольствуется тем, что почаще определяет и записывает поправку своих часов, но стрелок не переставляет, так как это расстроило бы ход часов. Если даже поставить часы совершенно точно, то через некоторое время они опять станут показывать неверно, так как нет часов, которые шли бы абсолютно правильно, не уходили бы вперёд и не отставали. Поэтому астрономы заботятся лишь о том, чтобы часы уходили вперёд иди отставали каждые сутки по возможности на одну и ту же величину. Эта величина называется ходом часов; у хороших часов ход должен оставаться одинаковым в течение сравнительно долгого времени. Желательно, конечно, чтобы ход был невелик, тогда и поправка будет изменяться медленно, и её точнее можно будет определить для нужного момента. У лучших современных часов изменения хода составляют несколько сотых долей секунды в сутки. По таким часам можно получить верное время с ошибкой меньше 0,1 секунды даже неделю спустя после проверки их по звёздам (после «определения поправки»), настолько хорошо они «держат ход».
9. ТРОПИЧЕСКИЙ ГОД И КАЛЕНДАРНЫЙ ГОД
Наша основная единица времени, солнечные сутки, очень неудобна для измерения длинных периодов.
Если бы мы вздумали измерять днями, например, возраст человека, то получались бы такие большие числа, что нам пришлось бы сделать то, что всегда делают в подобных случаях: взять более крупную единицу.
Например, при измерении веса основная единица есть грамм; но для взвешивания больших тяжестей мы употребляем единицу в 1000 граммов (килограмм) и в 1000 килограммов (тонну). Кажется, что и для измерения времени проще всего было бы составить новые единицы, например по 100 или по 1000 дней каждая, и придумать для них особые названия. Но тут-то выявляется резкое отличие времени от других величин: более крупная единица времени, как бы предназначенная для измерения длинных промежутков, уже дана самой природой, и обойти её мы не можем. Единица эта — год.
Настоящая брошюра составлена коллективом сотрудников Государственного астрономического института им. П. К. Штернберга в составе: проф. С. В. Орлова, проф. И. Ф. Полака, проф. Б. М. Щиголева и доц. П. Г. Куликовского под общей редакцией директора ГАИШ проф. Н. Д. Моисеева и преследует цель изложить простейшие способы астрономической ориентировки и приближенного определения времени, могущие оказаться полезными для бойцов Красной Армии и партизан.
Воспоминания американского астронавта Майкла Маллейна посвящены одной из наиболее ярких и драматичных страниц покорения космоса – программе многоразовых полетов Space Shuttle. Опередившая время и не использованная даже на четверть своих возможностей система оказалась и самым опасным среди всех пилотируемых средств в истории космонавтики. За 30 лет было совершено 135 полетов. Два корабля из пяти построенных погибли, унеся 14 жизней. Как такое могло случиться? Почему великие научно-технические достижения несли не только победы, но и поражения? Маллейн подробно описывает период подготовки и первое десятилетие эксплуатации шаттлов.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
Книга «Большой космический клуб» рассчитана на широкий круг читателей и рассказывает об образовании, становлении и развитии неформальной группы стран и организаций, которые смогли запустить национальные спутники на собственных ракетах-носителях с национальных космодромов.
Автор книги Анатолий Викторович Брыков — участник Великой Отечественной войны, лауреат Ленинской премии, заслуженный деятель науки и техники РСФСР, почетный академик и действительный член Академии космонавтики им. К. Э. Циолковского, доктор технических наук, профессор, ведущий научный сотрудник 4 Центрального научно-исследовательского института Министерства обороны Российской Федерации.С 1949 года, после окончания Московского механического института, работал в одном из ракетных научно-исследовательских институтов Академии артиллерийских наук в так называемой группе Тихонравова.
Книжка из серии научно-популярной литературы, содержит следующие разделы: история письменности и книгопечатания, как печатали эту книгу, альтернативные способы печати и т. д.
Каким образом научились записывать звук, какие для этого пришлось придумать машины, как совершенствовались эти машины со временем, какую роль играет искусство записи и повторения звука в современной жизни — обо всем этом и рассказывается в нашей книге.
В брошюре Г. И. Покровского «Наука и техника в современных войнах» говорится о большой роли современной науки и техники в военном деле. Автор рассматривает важнейшие проблемы естественных и технических наук, связанные с военным делом. Брошюра не претендует на полноту освещения затронутых в ней вопросов, на всестороннее их рассмотрение. Автор стремился дать материал для суждений на эту тему, помочь военнослужащим в развитии творческой мысли и в самостоятельной работе по обобщению опыта учебы, воспитания и боевой подготовки, в выработке смелого, верного научного предвидения, чтобы никакие неожиданности не могли застать их врасплох.Брошюра рассчитана на офицеров Советской Армии, Авиации и Флота.
В последние годы развития радиотехники возникло большое число новых применений радио. Этот период, по словам видного советского радиоспециалиста академика А.И. Берга, является «началом эпохи радиоэлектроники, так как именно в эти годы началось широчайшее внедрение радиоэлектронных методов во все отрасли науки, техники и народного хозяйства»…