Возвращение из космоса - [4]
ИЗ КОСМОСА — НА ОРБИТУ ВОКРУГ ЗЕМЛИ
Представим себе, что космический корабль выполнил задание по исследованию одной из планет и возвращается на Землю. Он летит во много раз быстрее артиллерийского снаряда, выстреленного из мощной пушки.
Если бы межпланетный корабль вошел в воздушный океан без снижения скорости, он сгорел бы подобно небесному камню еще на подступах к плотным слоям атмосферы. Ведь при торможении тела, движущегося с огромной скоростью, его энергия движения переходит в тепловую. Именно поэтому расплавляется свинцовый сердечник пули при ударе о каменную стену, нагревается молоток при ковке металла. Космический аппарат перед спуском на Землю должен много раз облететь вокруг земного шара в верхних слоях атмосферы, чтобы снизить свою скорость прежде всего до первой космической, равной около 8 км/сек. Это скорость, при которой аппарат становится спутником нашей планеты.
Как это сделать наиболее рационально, с какой стороны подойти к голубому океану Земли, под каким углом «нырнуть» в него, чтобы не сгореть, подобно метеору, и по возможности быстрее стать спутником Земли?
Прежде всего космонавты на межпланетном корабле будут иметь в виду, что их родная планета вращается вокруг своей оси. За 24 часа каждая точка на экваторе пробегает путь около 40000 км (такова окружность Земли). Таким образом, часовой пробег каждой точки поверхности на экваторе равен 1666 км. Не все современные самолеты имеют такую скорость.
По отношению к наблюдателю, находящемуся на Северном полюсе, наша планета вращается против часовой стрелки. Поэтому на круговую орбиту межпланетный корабль должен выходить «вдогон» Земли, вращающейся вокруг своей оси с запада на восток. В этом случае скорость корабля относительно точки, расположенной на экваторе, будет меньше почти на полкилометра в секунду. Но все же скорость корабля по отношению к Земле будет огромной. Насколько же близко от планеты надо пройти первый раз космическому аппарату, летящему с определенной скоростью, чтобы, с одной стороны, под действием земного притяжения изменить направление движения и обогнуть планету, а с другой — не сгореть при входе в атмосферу?
Ученые теоретически давно разработали возможные способы перехода возвращающегося из космоса межпланетного корабля на орбиту вокруг Земли. Один из них, называемый методом возвращения по тормозным эллипсам [6], мы сейчас разберем. Межпланетный корабль (рис. 2) движется в район Земли по параболе со скоростью 11,2 км/сек и пронзает воздушный океан, лишь касаясь плотных слоев атмосферы В этих слоях атмосферы скорость снижается, а крылья корабля создают «подъемную» силу, направленную к центру Земли. Эта сила, прижимая корабль к Земле, искривляет траекторию полета и выводит корабль сначала на эллиптические, а затем и на круговую траектории.
На круговую орбиту корабль не может перейти сразу, ему придется совершить несколько оборотов по эллиптической траектории.
Продолжительность каждого оборота будет определяться тем, насколько близко от поверхности планеты космический корабль пройдет первый раз. Так, например, если при первом «тормозном» эллипсе он пройдет на высоте около 80 км, то будет обращаться, снижая скорость, в течение девяти суток. Затем выйдет на круговую орбиту, полностью находящуюся в пределах атмосферы. Если же межпланетный корабль пролетит на высоте около 65 км, то время торможения составит всего 9 часов.
Следовательно, для быстрого уменьшения скорости выгодно направлять возвращающийся из космоса аппарат таким образом, чтобы уже при первом огибании земного шара он прошел на возможно меньшем расстоянии от поверхности нашей планеты.
Однако это невыгодно из-за чрезмерного аэродинамического нагрева и больших перегрузок, которые будет испытывать корабль. Так, если перигей (ближайшая к Земле точка) первого тормозного эллипса равен 80 км, то поверхность аппарата разогреется примерно до 100 °C, а ускорение не превысит 0,2 ускорения силы тяжести на земной поверхности. Если же корабль пройдет на высоте 67 км, то ускорение превысит земное в 1,8 раза, а температура обшивки достигнет 150 °C.
Вот почему при управлении летательным аппаратом, возвращающимся из космоса по тормозным эллипсам, необходимо с очень высокой точностью измерять величину и направление его скорости. Расчеты показывают, что ошибка в измерении направления скорости всего на одну сотую градуса приведет к отклонению высоты перигея первого тормозного эллипса на 12 км. При отклонении скорости корабля от заданной всего на 0,0015 км/сек величина перигея изменится на 9 км. Неточность в определении направления полета летательного аппарата на 0,01 градуса на расстоянии в четыре земных радиуса увеличит продолжительность торможения в пять раз.
Из этих расчетов видно, что для возвращения космического корабля по тормозным орбитам потребуется исключительно высокая точность и чувствительность приборов управления.
Конечно, можно снизить скорость движения корабля и по-другому. Для этого пришлось бы включить ракетные двигатели обратной тяги. Но это ведет к необходимости иметь на борту межпланетного аппарата большие запасы топлива. Чтобы при возвращении из космоса погасить скорость корабля полезным весом 7 т с 11 до 7,6 км/сек при помощи современных зарубежных ракетных двигателей, необходимо иметь на борту около 27 т топлива. Это увеличит общий стартовый вес ракеты в четыре раза. Возвращение корабля с таким же полезным весом по рассчитанным с большой точностью тормозным эллипсам потребует всего 140 кг топлива. Оно потребуется для компенсации непредвиденных отклонений от расчетной траектории и для корректировки скорости.
Воспоминания американского астронавта Майкла Маллейна посвящены одной из наиболее ярких и драматичных страниц покорения космоса – программе многоразовых полетов Space Shuttle. Опередившая время и не использованная даже на четверть своих возможностей система оказалась и самым опасным среди всех пилотируемых средств в истории космонавтики. За 30 лет было совершено 135 полетов. Два корабля из пяти построенных погибли, унеся 14 жизней. Как такое могло случиться? Почему великие научно-технические достижения несли не только победы, но и поражения? Маллейн подробно описывает период подготовки и первое десятилетие эксплуатации шаттлов.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
Книга «Большой космический клуб» рассчитана на широкий круг читателей и рассказывает об образовании, становлении и развитии неформальной группы стран и организаций, которые смогли запустить национальные спутники на собственных ракетах-носителях с национальных космодромов.
Автор книги Анатолий Викторович Брыков — участник Великой Отечественной войны, лауреат Ленинской премии, заслуженный деятель науки и техники РСФСР, почетный академик и действительный член Академии космонавтики им. К. Э. Циолковского, доктор технических наук, профессор, ведущий научный сотрудник 4 Центрального научно-исследовательского института Министерства обороны Российской Федерации.С 1949 года, после окончания Московского механического института, работал в одном из ракетных научно-исследовательских институтов Академии артиллерийских наук в так называемой группе Тихонравова.
Автор брошюры рассказывает о том, как было открыто пьезоэлектричество, какова физическая сущность этого явления, какими свойствами обладают пьезокристаллы.В брошюре говорится об устройстве пьезоэлектрических приборов и их применении в различных областях науки и техники. Особое внимание уделено применению этих приборов в военном делеБрошюра рассчитана на широкий круг читателей.
Наше поколение стало свидетелем необычайной победы человеческого разума — начала проникновения в космос. Перед молодежью открываются увлекательные, полные заманчивости перспективы межпланетных путешествий и открытий. Но есть еще и на нашей «обжитой» планете Земля много неизученных «белых пятен», среди них почти неизвестный на всю его глубину Мировой океан с его подводными горами и впадинами, со своим растительным и животным миром, со своими физическими законами. В изучении его большую пользу приносит гидроакустика — сравнительно молодая наука, имеющая большое будущее. Эта наука имеет большое прикладное значение.
В брошюре раскрывается атеистическое содержание технического прогресса. Автор объясняет, что техника, являясь, по выражению Маркса, «овеществленной силой знания», наглядно и убедительно показывает несостоятельность религиозного учения о неспособности человека познавать окружающий мир и преобразовывать его в своих интересах.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.