Воздушно-реактивные двигатели - [38]
Поэтому и англичане, жители Лондона, до сих пор вспоминают «бесшумные» ракеты Фау-2, которыми немцы бомбили Лондон в конце минувшей войны: эти ракеты летали со скоростью, значительно большей скорости звука.
Какая же картина предстанет перед нами в этом случае в нашем искусственном синем воздушном океане? Чтобы упростить эту картину, представим себе, что мы наблюдаем движение небольшой звучащей частицы, «звучащей точки» (рис. 55). Вот частица излучила звуковую волну: возникло темное кольцо в светлосинем океане. Это кольцо стало расти, как мыльный пузырь. Но в это время сама частица передвинулась и, так как ее скорость больше скорости звука, то она обогнала это расширяющееся кольцо. В новом положении частица испустила следующую звуковую волну, и так дальше. Конечно, частица может звучать непрерывно, но мы в данном случае фиксируем ее положение через определенные промежутки времени. Через некоторое время мы увидим в светлосинем океане резко очерченный темный конус, в вершине которого будет находиться стремительно движущаяся частица — источник звука. Внутри этого конуса будут заключены все излученные «звучащей точкой» звуковые волны, снаружи же воздушный океан останется совершенно спокойным, невозмущенным. Темная поверхность конуса разделила весь океан на две области — возмущенную и невозмущенную. Внутри конуса нас оглушает рев самолета, вне его царит абсолютное безмолвие.
Рис. 55. Так образуется конус возмущения при движении в воздухе какой-нибудь частицы со сверхзвуковой скоростью
Для появления этой картины в нашем синем океане не обязательно, конечно, чтобы двигалась именно звучащая частица. Мы увидим ту же картину и в том случае, если движущаяся частица будет «молчать». Перед движущимся телом, а значит и перед нашей частицей, воздух немного сжимается, давление его несколько повышается. Это повышение давления, небольшое по величине, будет распространяться во все стороны по тем же законам, что и звук, ибо звук тоже есть небольшое повышение давления. Судя по самой картине, мы даже не сможем сказать, звучит движущаяся частица или она безмолвна. При сверхзвуковом движении «безмолвной» частицы в синем океане появится тот же конус «возмущения». Вне этого конуса воздушный океан не получает никаких сигналов о движении частицы — все возмущения скрыты внутри этого конуса.
Оказывается, чтобы увидеть конус возмущения, вызываемого телом, движущимся со сверхзвуковой скоростью, вовсе не обязательно пользоваться искусственным «синим» воздухом, чувствительным к малейшему изменению давления. С помощью специальных методов можно сфотографировать такой конус и в обычном воздухе, пользуясь тем, что при уплотнении воздуха в волне возмущения меняются его оптические свойства. Эти методы позволяют сделать видимыми невидимые простым глазом явления в реальном прозрачном воздушном океане.
Можно увидеть подобный «сверхзвуковой» конус и простым глазом, но только не в воздухе, а на поверхности воды. Физические причины возникновения конуса возмущения в этом случае оказываются другими, они не связаны со скоростью звука, но сама по себе картина получается в точности такой же. Этой аналогией мы обязаны тем, что по поверхности воды волны тоже движутся с вполне определенной скоростью, как и звук в воздухе. Если по водной глади скользит какая-нибудь букашка со скоростью большей, чем скорость распространения волн, то эта букашка также окажется в вершине конуса возмущения. Все круговые волны, вызванные движением букашки, окажутся заключенными внутри этого конуса, а снаружи его поверхность воды будет попрежнему совершенно гладкой, невозмущенной. Да кто из нас не наблюдал расходящихся по воде в обе стороны «усов», возникающих при быстром движении катера или глиссера?
Но эта аналогия с движением по воде может быть продлена и дальше. Если по воде движется не букашка, а быстроходный катер, то он, рассекая воду, поднимает перед собой мощную волну, водяной вал. По обе стороны от носа катера встают высокие водяные буруны, два водяных вала, которые постепенно, на сравнительно большом расстоянии от катера, превращаются в упомянутые выше обычные «усы».
Нечто похожее происходит и при движении со сверхзвуковой скоростью в воздухе не «точки», а какого-нибудь большого тела. Перед ним возникает мощный воздушный «вал», волна уплотненного воздуха, переходящая в два воздушных «буруна» по обе стороны от тела, и уже только на значительном расстоянии эти «буруны» превращаются в обычный конус возмущения. В синем воздушном океане мы увидим резко очерченную, темную-темную переднюю, или головную, как ее называют, волну, постепенно светлеющую по обе стороны и переходящую в светлую, а значит, слабую коническую волну возмущения.
Вот такая же головная волна возникает и перед движущимся со сверхзвуковой скоростью прямоточным двигателем (рис. 56). Струи воздуха, мчащегося со сверхзвуковой скоростью, наталкиваются на эту волну, на стену уплотненного воздуха. Происходит удар, как о всякую преграду, — не зря эта волна носит название ударной волны. Почти внезапно, на ничтожно коротком расстоянии, давление воздуха резко увеличивается, воздух сжимается, уплотняется. Поэтому ударную волну и называют часто скачком уплотнения. Скорость воздуха в скачке резко уменьшается, и по другую сторону скачка она становится дозвуковой. В зеленом воздушном океане, чувствительном к скорости движения воздуха, цвет невозмущенного океана перед скачком темный-темный, а затем знакомая нам резко очерченная граница отделяет его от светлозеленого воздуха — за скачком воздух движется со скоростью, меньшей скорости звука. Чем больше была скорость до скачка, тем меньше она становится после него, значит, тем резче, сильнее, или, как говорят, интенсивнее, этот скачок.
В книге в популярной форме изложены принципы работы и устройства ракетных двигателей, работающих на твердом и жидком топливе. Приведено описание двигателей дальнобойной ракеты и ракетного самолета. Рассмотрены возможности, связанные с применением ракетных двигателей в авиации и артиллерии. Указаны пути и перспективы дальнейшего развития ракетных двигателей.
В книге рассказывается о самых различных применениях воздушной подушки в настоящее время и в будущем: о летающих автомобилях, судах и поездах, о воздушных домах, о городах под куполом и многом другом.
В книге рассказывается о том, как создавалась астронавтика — наука о межпланетных сообщениях, об основах этой науки, ее удивительном настоящем и увлкательном будущем. В ней говорится о многочисленных невиданных трудностях, стоящих на пути человека в Космос, и о том, как наука и техника преодолевают эти трудности, как готовится полет человека в космическое пространство.
Эта книга представляет собой живой, увлекательный рассказ об авиации, ракетной технике и космонавтике, их настоящем и будущем. Она вводит юного читателя в мир необычных летательных аппаратов атмосферной и заатмосферной авиации. Сегодня эти аппараты еще только рождаются в замыслах ученых и конструкторов, на чертежных досках и экспериментальных аэродромах, но именно им принадлежит будущее. В 1959 году книга «В небе завтрашнего дня» удостоена второй премии на конкурсе Министерства просвещения РСФСР на лучшую книгу о науке и технике для детей.
История создания машин началась очень давно, и за две с половиной тысячи лет своего существования они прошли путь от элементарной водяной мельницы до машины автономного действия — робота, наделенного некоторыми способностями, присущими только человеку. Пользуясь биологической терминологией, можно сказать, что машины в процессе своего исторического развития непрерывно эволюционировали, и так как они созданы человеком и в определенном смысле моделируют движения его органов, то поиск общего между машинами и биологическими объектами оказывается совершенно правомерным, особенно при популярном изложении теории машин и механизмов.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
В занимательной форме рассказано об исследованиях и разработках важнейших систем современных роботов. Показано, как можно самим выполнить ту или иную систему робота из простейших электронных схем. Приведены практические схемы отечественных и зарубежных любительских конструкций роботов. По сравнению с первым изданием (1980 г) материал значительно обновлён Для широкого круга читателей.
Издание посвящено выдающемуся российскому электротехнику, изобретателю и предпринимателю Павлу Николаевичу Яблочкову (1847–1894).
В 40–50-х годах прошлого века в СССР публиковалось несколько научно-популярных серий. Самая известная — серия «Научно-популярная библиотека». Параллельно с этой серией выпускалась серия «Научно-популярная библиотека солдата и матроса», издававшаяся военным, а не гражданским, издательством.Перед вами — одна из книг этой серии: «День и ночь. Времена года».В ней в очень простой и увлекательной форме даны основы окружающего нас мира — к которым мы настолько привыкли, что даже забываем задать себе очевидные, но не такие уж и простые для ответа вопросы…В этой небольшой книжке мы постараемся ответить на два вопроса — почему день сменяется ночью, а ночь днём и почему изменяются времена года.
История развития русской науки и техники богата многочисленными именами выдающихся изобретателей и конструкторов. С особенной гордостью мы вспоминаем славные имена — первого изобретателя паровой машины Ползунова, конструктора металлообрабатывающего станка Нартова, создателей первых русских паровозов Черепановых, выдающегося конструктора и изобретателя многочисленных механизмов, устройств и сооружений Кулибина и других ученых, техников и изобретателей, своими изобретениями и конструкциями намного опережавших иностранных ученых и техников.