Воздушно-реактивные двигатели - [31]
По мере роста скорости полета воронка засасываемого воздуха перед входным отверстием двигателя становится все меньше по размерам, а ее цвет все менее отличается от цвета окружающего океана. Наконец, при некоторой скорости полета воронка перед двигателем исчезает вовсе. Только что перед этим, при чуть меньшей скорости, еще была заметна слегка расширяющаяся вперед по направлению полета воронка, а теперь перед двигателем расстилается однотонный зеленый или синий океан.
Но двигатель работает, он все время засасывает воздух. Почему же эта засасываемая струя не видна? Оказывается, потому, что она не отличается от всего воздушного потока, мчащегося навстречу двигателю. Чтобы выделить струю засасываемого в двигатель воздуха, мы можем лишь мысленно провести в воздушном океане цилиндрическую поверхность, уходящую далеко вперед от входного отверстия двигателя. Это и будет поверхность цилиндрического «столба» воздуха, поступающего в двигатель. Воздух входит внутрь двигателя со скоростью, равной скорости полета. Давление этого воздуха равно давлению окружающей атмосферы (рис. 45, б).
Что же произойдет, если продолжать увеличивать скорость полета? Увидим ли мы тогда засасываемый в двигатель воздух, или он так и останется неразличимым? Оказывается, что при дальнейшем увеличении скорости полета со всасываемым в двигатель воздухом произойдут интересные изменения. В зеленом океане перед двигателем снова возникнет воронка засасываемого воздуха, но теперь перевернутая, обращенная к двигателю своим широким концом, и к тому же не темнее, а светлее окружающего океана, и тем светлее, чем ближе к входному отверстию двигателя. Все наоборот по сравнению с картиной, которую мы видели при малых скоростях полета.
Но что же означает эта новая картина?
Разобраться в этом нетрудно. Воздух, засасываемый в двигатель, теперь не разгоняется перед ним, а тормозится, его скорость не увеличивается, а уменьшается (рис. 45, в). Потому и воронка обращена к двигателю своим широким концом: для того чтобы пропустить то же количество воздуха при меньшей скорости, сечение воронки должно увеличиваться. Это и неудивительно. Ведь через двигатель независимо от скорости полета протекает постоянный объем воздуха, допустим, 50 м>3/сек. Поэтому скорость воздуха, поступающего в двигатель, также должна оставаться постоянной, допустим, равной 100 м/сек. Пока скорость полета меньше этой скорости, перед двигателем образуется воронка, сужающаяся к входному отверстию. В этой воронке воздух разгоняется от скорости полета до той скорости, которую он должен иметь при поступлении в двигатель. Когда скорость полета и скорость засасываемого воздуха выравниваются, т. е. скорость полета становится в нашем случае равной 100 м/сек, воронка приобретает цилиндрическую форму. Это значит, что скорость протекающего через эту воронку воздуха не меняется. Если же скорость полета станет больше 100 м/сек, т. е. превысит скорость воздуха, поступающего в двигатель, то перед двигателем воздух будет тормозиться; воронка в этом случае будет обращена к двигателю своим широким основанием.
Поэтому и в синем океане при большой скорости полета мы увидим расширяющуюся к двигателю воронку, причем ее цвет будет темнее окружающего океана, так как воздух в ней имеет повышенное давление. Наиболее темной эта воронка будет у самого входа в двигатель. Это значит, что у входа в двигатель воздух будет иметь наибольшее давление.
Таким образом, мы можем сделать очень важный для нас вывод: когда самолет летит с большой скоростью, то в двигатель поступает уже предварительно сжатый воздух, давление засасываемого воздуха повышается.
Как же происходит это сжатие воздуха без компрессора? Откуда берется необходимая для этого энергия?
Здесь мы имеем дело с очень важным для всей скоростной авиации понятием скоростного напора. Впрочем с этим понятием мы встречаемся не только в авиации, но и в окружающей нас природе.
Чем объясняется, например, страшная сила урагана, вырывающего с корнем вековые деревья, срывающего крыши с домов? Эта сила — скоростной напор бешено мчащегося воздуха; она возникает в то мгновение, когда воздух останавливается неожиданным препятствием. При этом вся кинетическая, скоростная энергия воздуха затрачивается на его сжатие, сопровождающееся повышением давления. Давление бесчисленного множества молекул воздуха, бомбардирующих поверхность прервавшего их бег препятствия, и есть скоростной напор, приобретающий страшную силу во время урагана. Для характеристики этой силы достаточно сказать, что только во время одного из 15 тайфунов, пронесшихся в 1954 г. над Японией, около 150 человек погибло, 500 человек было ранено и около 10 000 домов разрушено. А ведь скорость этого тайфуна достигла «всего» 27 м/сек.
Воздушный же поток, обрушившийся на поверхность быстро летящего на небольшой высоте самолета, страшнее самого сильного урагана, его скоростной напор во много раз больше. Это и понятно, так как скоростной напор пропорционален квадрату скорости полета: он порождается кинетической энергией воздуха, величина которой, как известно, также пропорциональна квадрату скорости движения. А скорость полета реактивного самолета значительно больше скорости движения воздуха при самом страшном урагане.
В книге в популярной форме изложены принципы работы и устройства ракетных двигателей, работающих на твердом и жидком топливе. Приведено описание двигателей дальнобойной ракеты и ракетного самолета. Рассмотрены возможности, связанные с применением ракетных двигателей в авиации и артиллерии. Указаны пути и перспективы дальнейшего развития ракетных двигателей.
В книге рассказывается о самых различных применениях воздушной подушки в настоящее время и в будущем: о летающих автомобилях, судах и поездах, о воздушных домах, о городах под куполом и многом другом.
В книге рассказывается о том, как создавалась астронавтика — наука о межпланетных сообщениях, об основах этой науки, ее удивительном настоящем и увлкательном будущем. В ней говорится о многочисленных невиданных трудностях, стоящих на пути человека в Космос, и о том, как наука и техника преодолевают эти трудности, как готовится полет человека в космическое пространство.
Эта книга представляет собой живой, увлекательный рассказ об авиации, ракетной технике и космонавтике, их настоящем и будущем. Она вводит юного читателя в мир необычных летательных аппаратов атмосферной и заатмосферной авиации. Сегодня эти аппараты еще только рождаются в замыслах ученых и конструкторов, на чертежных досках и экспериментальных аэродромах, но именно им принадлежит будущее. В 1959 году книга «В небе завтрашнего дня» удостоена второй премии на конкурсе Министерства просвещения РСФСР на лучшую книгу о науке и технике для детей.
Истощение месторождений нефти, угля и газа может привести к глобальной энергетической катастрофе. Ведь традиционные источники энергии иссекаемы. А ветер, Солнце, реки, океаны и моря обладают неисчерпаемыми запасами энергии. Доступна в неограниченных количествах и биомасса, и вторсырье.В книге рассматриваются устройства, с помощью которых можно получать энергию из неисчерпаемых или возобновляемых природных ресурсов. Такие устройства снижают зависимость от традиционного сырья. Повсеместный переход на альтернативную энергетику может эту зависимость полностью исключить.В ряде случаев использование традиционных источников или дорого, или они расположены так далеко от загородного дома, что коммуникации проложить невозможно.
Пожалуй, ни одна из новых наук, родившихся в наш XX век, не приобрела за короткий срок своего существования такой огромной популярности, как бионика. Однако, если не считать отдельных статей и брошюр, до сих пор о бионике с инженерных позиций с широким кругом читателей еще никто всерьез не говорил. Популяризация любой науки — дело сложное и трудное, а бионики — особенно. Чтобы написать в занимательной форме с большой научной достоверностью книгу о современных достижениях бионики и дальнейших путях развития этой новой многообещающей науки, нужно обладать не только обширными и глубокими инженерными знаниями, но и приобщиться к «безбрежной» биологии, что само по себе не просто.
Цель книги искусствоведа Сергея Кавтарадзе – максимально простым и понятным языком объяснить читателю, что такое архитектура как вид искусства. Автор показывает, как работают механизмы восприятия архитектурного сооружения, почему зритель получает от него эстетическое удовольствие. Книга учит самостоятельно видеть и анализировать пластические достоинства формы и бесконечные слои смыслового наполнения архитектурных памятников, популярно излагая историю европейских стилей и логику их развития.Книга адресована широкому кругу читателей, интересующихся архитектурой и историей искусства.
Как отапливать загородный дом и сделать систему отопления экономичной, будет ли хватать горячей воды на три санузла? И, наконец, как не превратиться в источник наживы для «хитрунов» – недобросовестных монтажников и бесконечных проверяющих чиновников? На эти (и не только) вопросы вы сможете получить ответы, прочитав данную брошюру.
Издание посвящено выдающемуся российскому электротехнику, изобретателю и предпринимателю Павлу Николаевичу Яблочкову (1847–1894).
В 40–50-х годах прошлого века в СССР публиковалось несколько научно-популярных серий. Самая известная — серия «Научно-популярная библиотека». Параллельно с этой серией выпускалась серия «Научно-популярная библиотека солдата и матроса», издававшаяся военным, а не гражданским, издательством.Перед вами — одна из книг этой серии: «День и ночь. Времена года».В ней в очень простой и увлекательной форме даны основы окружающего нас мира — к которым мы настолько привыкли, что даже забываем задать себе очевидные, но не такие уж и простые для ответа вопросы…В этой небольшой книжке мы постараемся ответить на два вопроса — почему день сменяется ночью, а ночь днём и почему изменяются времена года.
История развития русской науки и техники богата многочисленными именами выдающихся изобретателей и конструкторов. С особенной гордостью мы вспоминаем славные имена — первого изобретателя паровой машины Ползунова, конструктора металлообрабатывающего станка Нартова, создателей первых русских паровозов Черепановых, выдающегося конструктора и изобретателя многочисленных механизмов, устройств и сооружений Кулибина и других ученых, техников и изобретателей, своими изобретениями и конструкциями намного опережавших иностранных ученых и техников.