Воздушно-реактивные двигатели - [18]
Конструктивно двухконтурный турбореактивный двигатель устраивается так, что либо лопатки первых ступеней компрессора делаются более длинными, вследствие чего воздух, проходящий через удлиненные части лопаток, поступает не в следующие ступени компрессора, а во второй контур (см. рис. 24, сверху), либо во втором контуре устанавливается специальный высоконапорный вентилятор, приводимый во вращение турбиной двигателя (см. рис. 24, снизу). Так или иначе, но из сопла двухконтурною турбореактивною двигателя вытекают два газовых потока: в центре — раскаленные газы, снаружи — кольцевая струя холодного воздуха; при этом расход воздуха через двигатель увеличивается, а скорость отбрасывания газовоздушной струи уменьшается. Понятно, что двухконтурный двигатель более выгоден по сравнению с обычным турбореактивным двигателем при меньших скоростях полета и менее выгоден при больших скоростях: выигрыш в одном получается за счет проигрыша в другом. В настоящее время двухконтурные турбореактивные двигатели еще не получили широкого применения, но они могут найти применение в будущем на самолетах, предназначенных для скоростных дальних перелетов, например для трансконтинентальных или трансокеанских авиалиний. Следует отметить, что первые проекты двухконтурных двигателей были разработаны К. Э. Циолковским и конструктором А. М. Люлька.
Рис. 24. Принципиальные схемы двухконтурных турбореактивных двигателей
В двухконтурном турбореактивном двигателе сделан только первый шаг на пути уменьшения расхода топлива при малых скоростях полета. В турбовинтовом двигателе сделан второй такой шаг. В турбовинтовом двигателе, как и в турбореактивном, весь воздух направляется в камеру сгорания, но газы, вытекающие из камеры сгорания, расширяются в газовой турбине полностью, а не частично, как в турбореактивном двигателе. Вследствие этого давление газов за турбиной турбовинтового двигателя равно атмосферному, поэтому газы вытекают из двигателя наружу с небольшой скоростью, создавая таким образом лишь небольшую реактивную тягу. Но зато мощность газовой турбины, которой газы передают весь свой запас полезной энергии, значительно увеличивается и становится большей, чем мощность, необходимая для привода компрессора. Таким образом получается избыточная мощность, которая используется для вращения воздушного винта. Для передачи мощности с вала двигателя на воздушный винт применяется шестеренчатый редуктор (рис. 25), без которого в турбовинтовом двигателе обойтись нельзя, так как нельзя вращать винт с таким большим числом оборотов, которое развивает газовая турбина. Для более эффективной работы газовая турбина должна вращаться гораздо быстрее, чем это допустимо с точки зрения эффективной работы воздушного винта, так как воздушный винт имеет гораздо больший диаметр. Редуктор уменьшает число оборотов воздушного винта по сравнению с числом оборотов турбины раз в 10—15, а то и более. Следует заметить, что редуктор вызвал немало трудностей при доводке турбовинтового двигателя, что было одной из причин, задержавших широкое внедрение этих двигателей в авиации. Но еще большие трудности, однако, были связаны с доводкой систем регулирования турбовинтовых двигателей.
В настоящее время можно считать, что основные трудности, задерживавшие серийное производство турбовинтовых двигателей, преодолены. Турбовинтовые двигатели, сочетающие достоинства воздушного винта как движителя для умеренных скоростей полета с конструктивными преимуществами газотурбинного двигателя, в частности гораздо меньшим «лбом» (диаметром) (рис. 26), имеют несомненные перспективы широкого применения в авиации.
Рис. 25 Турбовинтовой двигатель: а — принципиальная схема; б — двигатель на испытательном стенде
В особенности они выгодны для самолетов гражданской авиации. В будущем основным типом самолетов, летающих на местных и на магистральных авиалиниях, будут, вероятно, самолеты с турбовинтовыми, а не с поршневыми двигателями. На экспрессных же линиях будут эксплуатироваться реактивные самолеты с турбореактивными двигателями, выгодные в тех случаях, когда на первый план выступает скорость полета, а его экономичность является второстепенным фактором.
Рис. 26. Относительные размеры поршневого (сверху) и турбовинтового (снизу) двигателей при одинаковой их мощности
Рассказ о двухконтурном и турбовинтовом двигателях может вызвать у читателя неверное представление о том, что обычный турбореактивный двигатель усложняется только тогда, когда его приспосабливают к меньшим скоростям полета. Это, конечно, не так. Турбореактивный двигатель прост лишь по принципиальной схеме; в действительности он представляет собой весьма сложную машину. Дальнейшее совершенствование двигателя приводит к его постепенному усложнению, которое оказывается необходимым в связи с ростом требований, предъявляемых к двигателям современных самолетов. В подтверждение этого достаточно привести следующие два примера.
Первый пример связан с одной из тенденций развития современных турбореактивных двигателей — увеличением степени повышения давления в компрессоре двигателя. В первых турбореактивных двигателях давление воздуха в компрессоре повышалось в 3—4 раза, а теперь повышение давления воздуха в компрессоре в 6—7 раз не всегда удовлетворяет конструкторов. Но как можно достичь дальнейшего увеличения степени повышения давления? Оказывается, простое увеличение числа ступеней осевого компрессора двигателя не всегда приводит к желательному результату — двигатель с таким компрессором начинает плохо работать, в особенности при запуске и на режимах неполной мощности, т. е. на режимах пониженной тяги. Это связано с явлением так называемого помпажа, о котором будет сказано ниже. Одним из способов преодоления этой трудности является устройство турбореактивного двигателя по так называемой двухвальной схеме (рис. 27). В этом случае ротор двигателя имеет два самостоятельных вала, с двумя самостоятельными осевыми компрессорами и двумя самостоятельными турбинами, причем валы вращаются с разным числом оборотов. Оба компрессора устанавливаются один за другим, так что сначала воздух, поступивший в двигатель, сжимается в переднем компрессоре (низкого давления), а затем он поступает в следующий, задний компрессор (высокого давления). Каждый из этих компрессоров приводится во вращение своей турбиной, так что обе турбины двигателя тоже оказываются установленными одна за другой. Передняя турбина, в которую газы поступают непосредственно из камеры сгорания, имея еще большое давление, приводит во вращение задний компрессор; таким образом турбина высокого давления приводит во вращение компрессор высокого давления. Задняя турбина, в которую газы поступают после расширения в передней турбине и которая поэтому является турбиной низкого давления, приводит во вращение компрессор низкого давления — передний. Вал, связывающий турбину и компрессор низкого давления, проходит внутри полого вала, связывающего турбину и компрессор высокого давления. Понятно, что такой турбореактивный двигатель оказывается сложнее обычного, но зато он обладает и лучшими характеристиками.
В книге в популярной форме изложены принципы работы и устройства ракетных двигателей, работающих на твердом и жидком топливе. Приведено описание двигателей дальнобойной ракеты и ракетного самолета. Рассмотрены возможности, связанные с применением ракетных двигателей в авиации и артиллерии. Указаны пути и перспективы дальнейшего развития ракетных двигателей.
В книге рассказывается о самых различных применениях воздушной подушки в настоящее время и в будущем: о летающих автомобилях, судах и поездах, о воздушных домах, о городах под куполом и многом другом.
Эта книга представляет собой живой, увлекательный рассказ об авиации, ракетной технике и космонавтике, их настоящем и будущем. Она вводит юного читателя в мир необычных летательных аппаратов атмосферной и заатмосферной авиации. Сегодня эти аппараты еще только рождаются в замыслах ученых и конструкторов, на чертежных досках и экспериментальных аэродромах, но именно им принадлежит будущее. В 1959 году книга «В небе завтрашнего дня» удостоена второй премии на конкурсе Министерства просвещения РСФСР на лучшую книгу о науке и технике для детей.
В книге рассказывается о том, как создавалась астронавтика — наука о межпланетных сообщениях, об основах этой науки, ее удивительном настоящем и увлкательном будущем. В ней говорится о многочисленных невиданных трудностях, стоящих на пути человека в Космос, и о том, как наука и техника преодолевают эти трудности, как готовится полет человека в космическое пространство.
В 2020 году атомной промышленности России исполнилось 75 лет. Энергия атома удивительна и универсальна – это основная и неисчерпаемая энергия Вселенной. Она применяется во многих сферах жизни, самое главное – использовать ее мирно и разумно, ведь, как говорил основатель атомной промышленности Игорь Курчатов, атомную энергию можно превратить «в мощный источник энергии, несущий благосостояние и радость всем людям на Земле». Автор книги – профессор кафедры теоретической физики им. Э. В. Шпольского и научный руководитель УНЦ функциональных и наноматериалов Московского педагогического государственного университета Ирина Разумовская. Издание с дополненной реальностью. В формате PDF A4 сохранен издательский макет книги.
В книге подробно рассматриваются основные аспекты работы специалиста по техническим текстам — от первых шагов и введения в профессию «технический писатель» до обзора применяемого программного обеспечения и организационных вопросов трудоустройства, включая взаимодействие с зарубежными заказчиками. Также описываются современные тенденции и изменения в профессии. Адресуется тем, кто уже работает «техписом» или ещё только собирается овладеть этой специальностью.
Исторические, или историко-ориентированные, информационные системы – значимый элемент информационной среды гуманитарных наук. Его выделение связано с развитием исторической информатики и историко-ориентированного подхода, формированием информационной среды, практикой создания исторических ресурсов. Книга содержит результаты исследования теоретических и прикладных проблем создания и внедрения историко-ориентированных информационных систем. Это первое комплексное исследование по данной тематике. Одни проблемы в книге рассматриваются впервые, другие – хотя и находили ранее отражение в литературе, но не изучались специально. Издание адресовано историкам, специалистам в области цифровой истории и цифровых гуманитарных наук, а также разработчикам цифровых ресурсов, содержащих исторический контент или ориентированных на использование в исторических исследованиях и образовании. В формате PDF A4 сохранен издательский макет.
Книга в доступной форме рассказывает об истории появления паровых машин и железных дорог, повествует об их устройстве и роли в экономике большой страны. Кроме подробного описания устройства, издание снабжено наглядными, хоть и упрощенными схемами и художественными иллюстрациями.
В 40–50-х годах прошлого века в СССР публиковалось несколько научно-популярных серий. Самая известная — серия «Научно-популярная библиотека». Параллельно с этой серией выпускалась серия «Научно-популярная библиотека солдата и матроса», издававшаяся военным, а не гражданским, издательством.Перед вами — одна из книг этой серии: «День и ночь. Времена года».В ней в очень простой и увлекательной форме даны основы окружающего нас мира — к которым мы настолько привыкли, что даже забываем задать себе очевидные, но не такие уж и простые для ответа вопросы…В этой небольшой книжке мы постараемся ответить на два вопроса — почему день сменяется ночью, а ночь днём и почему изменяются времена года.
Издание посвящено выдающемуся российскому электротехнику, изобретателю и предпринимателю Павлу Николаевичу Яблочкову (1847–1894).
История развития русской науки и техники богата многочисленными именами выдающихся изобретателей и конструкторов. С особенной гордостью мы вспоминаем славные имена — первого изобретателя паровой машины Ползунова, конструктора металлообрабатывающего станка Нартова, создателей первых русских паровозов Черепановых, выдающегося конструктора и изобретателя многочисленных механизмов, устройств и сооружений Кулибина и других ученых, техников и изобретателей, своими изобретениями и конструкциями намного опережавших иностранных ученых и техников.