Вопрос жизни - [16]
За пределами ядра ситуация сходная. Эукариотам свойственна, по сути, одинаковая клеточная машинерия – за исключением архезоев (разбросанных по всем пяти супергруппам, что свидетельствует о независимой утрате присущей им прежде сложности). У всех эукариот имеются сложные внутренние мембранные структуры, например эндоплазматический ретикулум и аппарат Гольджи, приспособленные для упаковки и выведения наружу белков. У всех эукариот есть динамический внутренний цитоскелет, способный принимать любую форму в соответствии с потребностями клетки. У всех эукариот есть моторные белки. Все эукариоты обладают митохондриями, лизосомами, пероксисомами, транспортными системами для перемещения веществ внутрь и наружу, а также общими сигнальными системами. И список на этом не заканчивается! Все эукариоты делятся митозом, в ходе которого хромосомы расходятся к полюсам клетки, увлекаемые микротрубочками веретена. Набор участвующих в митозе ферментов один и тот же. Эукариоты размножаются половым путем, а их жизненный цикл включает мейоз (редукционное деление), в результате которого формируются гаметы – сперматозоиды и яйцеклетки, которые впоследствии сливаются друг с другом. Те редкие эукариоты, которые отказываются от полового размножения, как правило, быстро вымирают (“быстро” в данном случае – за несколько миллионов лет).
Почти все это давно известно из исследований микроскопической структуры клеток, но наступление новой эры филогеномики прояснило два момента. Во-первых, стало понятно, что перечисленные структурные гомологии обусловлены не поверхностным сомнительным сходством. Все эти признаки закодированы в последовательностях генов миллиардами нуклеотидов, и по этим последовательностям можно выстраивать очень точные филогенетические деревья. Во-вторых, с развитием методов высокопроизводительного секвенирования значительно упростился процесс обнаружения и исследования новых организмов. Отпала необходимость в таких долгих и трудоемких процедурах, как культивация клеток и приготовление микропрепаратов. Новый метод надежен и скор. Так было открыто несколько необычных групп эукариот, например экстремофилы, способные переносить высокие концентрации ядовитых металлов, и пикоэукариоты – крошечные, размером с бактерии, клетки, обладающие полным эукариотическим набором: ядром и митохондриями. Так расширилось наше представление о разнообразии эукариот. Все недавно обнаруженные эукариоты относятся к пяти супергруппам, существование которых четко установлено: на филогенетическом дереве эукариот уже не вырастает крупных ветвей. Поразительно, что при всем разнообразии эукариоты похожи друг на друга. Нам не удается обнаружить ни переходных форм в эволюции эукариот, ни боковых ветвей. То, о чем говорила теория серийных эндосимбиозов, не сбывается.
Это порождает другую проблему. Успехи филогенетики и биоинформатики столь ошеломительны, что мы легко забываем: эти методы имеют свои ограничения. Проблему являет собой филогенетический горизонт событий, скрывающий момент появления эукариот. Ведь все их геномы восходят к Последнему общему предку эукариот (LECA), строение которого уже было очень сложным. Но откуда произошли все его структуры? Есть ощущение, будто предок эукариот родился уже зрелым, как Афина в полном вооружении из головы Зевса. О происхождении почти всех компонентов эукариотических клеток не известно почти ничего. Как и почему появилось ядро? Как возникло половое размножение? Почему у эукариот два пола? Как появилась изумительная система внутренних мембран? Как цитоскелет приобрел пластичность и динамику? Почему при мейозе число хромосом удваивается перед тем, как уменьшиться вдвое? Почему мы стареем, болеем раковыми заболеваниями и умираем? Увы, молекулярная филогенетика, несмотря на свою изощренность, почти ничего не может рассказать об этих биологических процессах. Подавляющее большинство генов, управляющих этими процессами, присуще лишь эукариотам и у прокариот не встречается. У бактерий, в свою очередь, почти не наблюдается тенденции к приобретению сложных эукариотических черт (рис. 6). История появления этих признаков – тайна.
Рис. 6. Грандиозный пробел в знаниях.
Нижний рисунок – электронная микрофотография клетки амебы Naegleria (организма, напоминающего сложностью и размерами Последнего общего предка эукариот). У этой клетки есть ядро (Я), эндоплазматический ретикулум (ЭР), комплекс Гольджи (КГ), митохондрии (М), пищеварительная вакуоль (ПВ), фагосомы (Ф) и пероксисомы (П). Вверху, для сравнения, – электронная микрофотография сравнительно сложной бактерии планктомицета. Разумеется, эукариоты происходят не от планктомицетов, но на этом примере видно, как велика пропасть между самыми сложными из прокариот и примитивнейшими эукариотами. И нам не известны выжившие промежуточные формы, которые могли бы перебросить мост через эту пропасть (возможные переходные звенья обозначены черепом с костями).
Эволюционная теория предполагает: сложные свойства приобретаются в результате ряда маленьких шагов, и каждый шаг позволяет получить небольшое преимущество. Отбор адаптивных свойств предполагает потерю менее адаптивных, поэтому промежуточные формы непрерывно отсеиваются. С течением времени высота пиков адаптивного ландшафта меняется, и пики, соответствующие самым полезным приобретениям, заслоняют соседние. Так, мы знаем глаз во всем его совершенстве, а менее совершенные промежуточные этапы его развития нам неизвестны. Дарвин в “Происхождении видов” высказал мысль: естественный отбор действительно предполагает утрату промежуточных форм. Поэтому неудивительно, что не сохранилось живых переходных форм между бактериями и эукариотами. Куда удивительнее то, что удачные приспособления не продолжают улучшаться – как в случае глаза.
С тех пор как в 1770-х годах кислород был открыт, ученые горячо спорят о его свойствах. Этот спор продолжается по сей день. Одни объявляют кислород эликсиром жизни — чудесным тонизирующим препаратом, лекарством против старения, косметическим средством и перспективным методом лечения. Другие воспринимают его как огнеопасное вещество и страшный яд, который в конце концов уничтожит нас всех. Ник Лэйн ответит на вопрос: кислород — наш единственный шанс на выживание или самый худший враг?
Испокон веков люди обращали взоры к звездам и размышляли, почему мы здесь и одни ли мы во Вселенной. Нам свойственно задумываться о том, почему существуют растения и животные, откуда мы пришли, кто были наши предки и что ждет нас впереди. Пусть ответ на главный вопрос жизни, Вселенной и вообще всего не 42, как утверждал когда-то Дуглас Адамс, но он не менее краток и загадочен — митохондрии.Они показывают нам, как возникла жизнь на нашей планете. Они объясняют, почему бактерии так долго царили на ней и почему эволюция, скорее всего, не поднялась выше уровня бактериальной слизи нигде во Вселенной.
Как возникла жизнь? Откуда взялась ДНК? Почему мы умираем? В последние десятилетия ученые смогли пролить свет на эти и другие вопросы происхождения и организации жизни. Известный английский биохимик реконструирует историю всего живого, описывая лучшие изобретения эволюции, и рассказывает, как каждое из них, начиная с самой жизни и генов и заканчивая сознанием и смертью, преображало природу нашей планеты и даже саму планету.
Петр Ильинский, уроженец С.-Петербурга, выпускник МГУ, много лет работал в Гарвардском университете, в настоящее время живет в Бостоне. Автор многочисленных научных статей, патентов, трех книг и нескольких десятков эссе на культурные, политические и исторические темы в печатной и интернет-прессе США, Европы и России. «Легенда о Вавилоне» — книга не только о более чем двухтысячелетней истории Вавилона и породившей его месопотамской цивилизации, но главным образом об отражении этой истории в библейских текстах и культурных образах, присущих как прошлому, так и настоящему.
Научно-популярный журнал «Открытия и гипотезы» представляет свежий взгляд на самые главные загадки вселенной и человечества, его проблемы и открытия. Никогда еще наука не была такой интересной. Представлены теоретические и практические материалы.
«Что такое на тех отдаленных светилах? Имеются ли достаточные основания предполагать, что и другие миры населены подобно нашему, и если жизнь есть на тех небесных землях, как на нашей подлунной, то похожа ли она на нашу жизнь? Одним словом, обитаемы ли другие миры, и, если обитаемы, жители их похожи ли на нас?».
Взыскание Святого Грааля, — именно так, красиво и архаично, называют неповторимое явление средневековой духовной культуры Европы, породившее шедевры рыцарских романов и поэм о многовековых поисках чудесной лучезарной чаши, в которую, по преданию, ангелы собрали кровь, истекшую из ран Христа во время крестных мук на Голгофе. В некоторых преданиях Грааль — это ниспавший с неба волшебный камень… Рыцари Грааля ещё в старых текстах именуются храмовниками, тамплиерами. История этого католического ордена, основанного во времена Крестовых походов и уничтоженного в начале XIV века, овеяна легендами.
В занимательной и доступной форме автор вводит читателя в удивительный мир микробиологии. Вы узнаете об истории открытия микроорганизмов и их жизнедеятельности. О том, что известно современной науке о морфологии, методах обнаружения, культивирования и хранения микробов, об их роли в поддержании жизни на нашей планете. О перспективах разработок новых технологий, применение которых может сыграть важную роль в решении многих глобальных проблем, стоящих перед человечеством.Книга предназначена широкому кругу читателей, всем, кто интересуется вопросами современной микробиологии и биотехнологии.
В своей книге американский биолог, крупнейший специалист по эволюционной биологии развития (эво-дево) Шон Кэрролл понятно и увлекательно рассказывает о том, как эволюция и работа естественного отбора отражаются в летописи ДНК. По его собственным словам, он приводит такие доказательства дарвиновской теории, о которых сам Дарвин не мог и мечтать. Генетические исследования последних лет показывают, как у абсолютно разных видов развиваются одни и те же признаки, а у родственных — разные; каким образом эволюция повторяет сама себя; как белокровные рыбы научились обходиться без гемоглобина, а колобусы — переваривать растительную пищу как жвачные животные.
“Жизнь 3.0. Быть человеком в эпоху искусственного интеллекта” – увлекательная научно-популярная книга, вторая книга Макса Тегмарка, физика и космолога, профессора Массачусетского технологического института. В ней он рассматривает возможные сценарии развития событий в случае появления на Земле сверхразумного искусственного интеллекта, анализирует все плюсы и минусы и призывает специалистов объединить свои усилия в борьбе за кибербезопасность и “дружественный” искусственный интеллект.
В этой книге, посвященной истории возникновения и развития науки о биологической основе человеческой психики, Эрик Кандель разъясняет революционные достижения современной биологии и проливает свет на то, как бихевиоризм, когнитивная психология и молекулярная биология породили новую науку. Книга начинается с воспоминаний о детстве в оккупированной нацистами Вене и описывает научную карьеру Канделя, от его раннего увлечения историей и психоанализом до новаторских работ в области изучения клеточных и молекулярных механизмов памяти, за которые он удостоился Нобелевской премии.
Все решения и поступки зарождаются в нашей психике благодаря работе нейронных сетей. Сбои в ней заставляют нас страдать, но порой дарят способность принимать нестандартные решения и создавать шедевры. В этой книге нобелевский лауреат Эрик Кандель рассматривает психические расстройства через призму “новой биологии психики”, плода слияния нейробиологии и когнитивной психологии. Достижения нейровизуализации, моделирования на животных и генетики помогают автору познавать тайны мозга и намечать подходы к лечению психических и даже социальных болезней.