Вначале была аксиома. Гильберт. Основания математики - [45]
Возникает важный вопрос: можно ли свести всю математику к теории множеств? Если истолковать объекты нашего языка первого порядка как множества, легко эмпирически убедиться, что большинство математических сущностей можно определить на основе множеств. Эта программа исследования основывалась на вышеупомянутой теории множеств ZF: на базе небольшого количества аксиом, сформулированных в первом порядке, эта теория множеств была способна охватить значительную часть математики того времени.
Снова, как в итоге понял Гёдель, цена этого теоретического богатства (выразимость) — метатеоретическая бедность, которая проявляется в нескольких ограничивающих результатах: теоремах о неполноте. В первой теореме доказывается, что существует истинная формула, которая недоказуема в ZF (хотя в работе Гёделя в качестве отправной формальной системы взят труд Рппсгрга mathematica, а его результаты справедливы для ZFи других смежных систем). А во второй — что невозможно доказать непротиворечивость ZF в ZF. Более того, доказательство в ZF отсутствия противоречия в ZF и, следовательно, в математике доказало бы исключительно, что ZF и математика противоречивы. Гёдель положил конец надежде на формализм Гильберта. Все усилия, направленные на доказательство непротиворечивости математики, обречены на провал. Точнее, невозможно доказать посредством финитных методов отсутствие противоречий любой формальной системы, содержащей арифметику Пеано (если позволить себе применение тяжелой артиллерии, непротиворечивость все-таки возможно доказать, как в 1936 году это сделал ученик Гильберта Герхард Генцен (1909-1945), хотя и посредством трансфинитных методов, очевидность которых спорная).
Кто из нас не возликовал бы, подними он занавес, за которым скрывается будущее, загляни он в последующие достижения науки и секреты ее развития?!
Давид Гильберт, из речи на II Международном конгрессе математиков в Париже
Парадокс лжеца был для Гёделя одним из двигателей доказательства теорем о неполноте. Поскольку доказательство было на грани перехода в цикличность, некоторые математики — в частности, 60-летний Цермело — не осознали его ценности. Гёдель придумал ловкий перевод на метаязык внутри языка: арифметизацию метаматематики. С помощью смелой цифровой кодификации, основанной на простых числах (которую с тех пор называют гёделизацией), он назначил номера знакам так, чтобы с каждой формулой (и также с каждым доказательством) можно было связать число, кодировавшее бы всю структуру. Пропозиции, в которых говорилось о свойствах формальной системы, выражались в рамках системы посредством арифметических формул. Доказуемость, например, была представлена в виде числового отношения.
В таких условиях Гёдель вышел из ситуации, составив формулу G, которая говорит сама о себе: «я недоказуемо». Эта формула стала примером неразрешимого утверждения внутри формальной системы: ни она, ни ее отрицание не являются теоремами, то есть чем-то доказуемым. Действительно, Іеделю удалось доказать, что G доказуемо тогда и только тогда, когда ¬G доказуемо. Следовательно, если мы хотим, чтобы формальная система была непротиворечивой, ни G, ни ¬G не могут быть таковыми. Если бы G было доказуемо, так как ¬G утверждает в метаматематических терминах, что G доказуемо (отрицает то, что оно недоказуемо, как сказано в нем самом), то было бы возможно доказать также ¬G и вывести противоречие (G^¬G). И наоборот, если бы ¬G было доказуемым, мы могли бы по той же причине доказать G и прийти к тому же противоречию. В итоге доказательство любой из этих двух формул автоматически предполагало бы противоречивость системы. Более того, если допустить, что формальная система непротиворечива, то G недоказуемо, но истинно. Если бы G было ложно, так как в G говорится: «я недоказуемо», то G было бы доказуемо, что невозможно. Следовательно, у нас есть высказывание G, которое, хотя и недоказуемо, является истинным.
Существование неразрешимого утверждения предполагает, что аксиомы теории не содержат ответа на все вопросы, формулируемые формальным языком, потому что ни утверждение, ни его отрицание не являются теоремами. И так как либо оно, либо его отрицание должно быть истинным, у нас есть истинная недоказуемая формула. Хуже всего, что если добавить неразрешимое утверждение в качестве аксиомы, появляются другие, новые. Математика вдруг очнулась от гильбертова сна — от мечты о полноте, в которой аксиоматические системы не содержат неразрешимых формул, а истинное всегда совпадает с доказуемым. Проще говоря, «непротиворечивый» предполагает «неполный», и наоборот, «полный» предполагает «противоречивый». Ни одна формальная система, содержащая привычную арифметику, не может быть одновременно и той и другой. Если мы предположим, что она непротиворечива, она всегда будет неполной, то есть будет содержать недоказуемые истины. Будут существовать некоторые истинные свойства формально неразрешимых чисел, то есть свойства, которые мы не можем ни доказать, ни отвергнуть на основе аксиом.
Но за первой теоремой о неполноте следует вторая: так как непротиворечивость равносильна утверждению, что формула 0≠0 недоказуема, Гёдель трансформировал это последнее математическое свойство в арифметическую формулу (назовем ее С) и заметил, что в первой теореме установлено, по сути, что «C→G». Непротиворечивость предполагает, что существует неразрешимое утверждение и, следовательно, неполнота. Так что доказательство С позволило бы нам исключить G из импликации «C→G» посредством modus ponens и, следовательно, доказать G, что невозможно, поскольку G недоказуемо. Это удивительное следствие сводится к тому, что непротиворечивость формальной системы, которая включает в себя арифметику, недоказуема в рамках формальной системы. Гёдель не доказал должным образом эту вторую теорему, он только высказался о ее приемлемости, но так никогда и не записал обещанного доказательства. Первое полное доказательство, очень тщательное, появилось, что любопытно, в 1939 году, во втором томе «Оснований математики» Бернайса и Гильберта.
В книге автор рассказывает о непростой службе на судах Морского космического флота, океанских походах, о встречах с интересными людьми. Большой любовью рассказывает о своих родителях-тружениках села – честных и трудолюбивых людях; с грустью вспоминает о своём полуголодном военном детстве; о годах учёбы в военном училище, о начале самостоятельной жизни – службе на судах МКФ, с гордостью пронесших флаг нашей страны через моря и океаны. Автор размышляет о судьбе товарищей-сослуживцев и судьбе нашей Родины.
В этой книге рассказывается о зарождении и развитии отечественного мореплавания в северных морях, о боевой деятельности русской военной флотилии Северного Ледовитого океана в годы первой мировой войны. Военно-исторический очерк повествует об участии моряков-североморцев в боях за освобождение советского Севера от иностранных интервентов и белогвардейцев, о создании и развитии Северного флота и его вкладе в достижение победы над фашистской Германией в Великой Отечественной войне. Многие страницы книги посвящены послевоенной истории заполярного флота, претерпевшего коренные качественные изменения, ставшего океанским, ракетно-ядерным, способным решать боевые задачи на любых широтах Мирового океана.
Книга об одном из величайших физиков XX века, лауреате Нобелевской премии, академике Льве Давидовиче Ландау написана искренне и с любовью. Автору посчастливилось в течение многих лет быть рядом с Ландау, записывать разговоры с ним, его выступления и высказывания, а также воспоминания о нем его учеников.
Валентина Михайловна Ходасевич (1894—1970) – известная советская художница. В этой книге собраны ее воспоминания о многих деятелях советской культуры – о М. Горьком, В. Маяковском и других.Взгляд прекрасного портретиста, видящего человека в его психологической и пластической цельности, тонкое понимание искусства, светлое, праздничное восприятие жизни, приведшее ее к оформлению театральных спектаклей и, наконец, великолепное владение словом – все это воплотилось в интереснейших воспоминаниях.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.