Вирус, который сломал планету. Почему SARS-CoV-2 такой особенный и что нам с ним делать - [6]
Использовать клеточные протеазы для проникновения внутрь умеют многие вирусы: например, злобный родственник нынешнего коронавируса SARS (вирус, вызвавший вспышку атипичной пневмонии в 2002–2004 годах) эксплуатировал протеазу под названием TMPRSS2. Но SARS-CoV-2 не ограничился одной протеазой. В его спайк-белке вдобавок к последовательности, узнаваемой TMPRSS2, есть фрагмент, который расщепляет клеточная протеаза фурин. Предполагается, что готовность «работать» сразу с двумя протеазами делает нынешний коронавирус намного более заразным, чем его предшественник: если почему-либо TMPRSS2 окажется недоступна, он всегда сможет воспользоваться альтернативной протеазой[7]. Более того, благодаря использованию протеаз SARS-CoV-2 скрывается от иммунной системы. Важнейшая часть вирусной оболочки, на которую реагируют различные иммунные компоненты, в том числе антитела, — RBD-фрагмент. До того как какая-нибудь из протеаз расщепит спайк-белок, этот кусочек находится в «лежачей» конформации и практически не выдается наружу. После взаимодействия с протеазой RBD-фрагмент поднимается над поверхностью и его можно легко обнаружить, но в этот момент вирус уже сливается с клеточной мембраной, и, для того чтобы его обезвредить, необходимо привлекать другие рода иммунных войск[8].
Различные протеазы используют в своих целях многие вирусы. Фурин печально знаменит тем, что сотрудничает с особо неприятными из них. Сайт (специфический участок) для расщепления фурином есть, например, у высокопатогенных штаммов птичьего гриппа. Его несет находящийся на поверхности вирусной частицы белок гемагглютинин. После того как сидящий на внешней мембране клетки фурин разрежет гемагглютинин на две субъединицы, на одной из них формируется участок, облегчающий слипание вирусной и клеточной мембран. Еще раз вирус птичьего гриппа использует фурин для того, чтобы более эффективно выпускать наружу новосинтезированные вирусные частицы — в этом случае работа пептидазы облегчает слияние вирусной и клеточной мембран изнутри клетки. Помогает фурин и вирусу иммунодефицита человека (ВИЧ): один из белков его оболочки синтезируется в виде полуфабриката и нуждается в разрезании фурином. Белки флавивирусов, к которым относятся возбудители таких опасных болезней, как энцефалит, желтая лихорадка или лихорадка денге, также расщепляются фурином в процессе сборки вирусных частиц.
Удобную протеазу научились использовать не только вирусы: многие бактерии с ее помощью активируют свои токсины. Фурин расщепляет на две субъединицы А и В токсин дифтерийной палочки, после чего субъединица А отправляется в ядро и тормозит процессы, необходимые для синтеза клеточных белков (сам синтез белков идет в цитоплазме, но для его регуляции необходима работа определенных ядерных генов). После того как фурин разрежет на три части токсин сибирской язвы, структурная часть получившихся кусочков формирует канал, через который ядовитые фрагменты проникают в цитоплазму[9].
Казалось бы, такой вредный для клетки белок должен исчезнуть под давлением отбора, но увы, фурин и другие протеазы играют важнейшую роль в работе клеток и развитии эмбрионов, поэтому животным приходится носить в себе такую мину. По этой же причине — из-за участия фурина во множестве физиологических процессов — его вряд ли получится использовать как мишень для потенциального лекарства от COVID-19, хотя в экспериментах на культурах клеток и показано, что его блокировка уменьшает инфекционность SARS-CoV-2. Предыдущие попытки применить ингибиторы фурина (вещества, которые «выключают» его) для лечения других заболеваний показали, что такой подход дает множество побочных эффектов[10],[11].
Размножение
Попасть внутрь клетки — половина дела. Цель вируса — создать как можно больше собственных копий, которые смогут распространиться и заразить другие клетки. Для этого необходимо синтезировать тысячи новых молекул РНК[12] для загрузки в вирусные частицы, а также все необходимые белки. Своих ресурсов для этого у коронавируса нет, зато есть инструменты, при помощи которых он может заставить клетку выполнить требуемые задачи. Эти инструменты — особые белки, которые переключают клетку из нормального режима работы в режим пособничества вирусу. Информация об аминокислотной последовательности таких хакерских белков закодирована в вирусной геномной молекуле РНК, причем это сделано крайне изобретательно. Чтобы впихнуть все необходимые данные в относительно небольшой геном, коронавирус (и не он один) использует хитрую комбинаторику. Его гены не записаны в молекуле РНК один за другим: они расположены внахлест — то есть перекрываются. Благодаря такому сжатию в одной и той же РНК умещается информация о большем количестве белков, чем если бы гены шли подряд. Если вы готовы немного погрузиться в биологию, чтобы разобраться, как именно вирусы извлекают информацию из перекрывающихся генов, читайте врезку ниже. Если нет — пропустите ее и переходите к следующему абзацу.
Почему одни люди с легкостью отказываются от соблазнов, а другие не в силах им противостоять? Автор книги, собрав самые свежие научные данные, доказывает, что люди, которым сложно сопротивляться искушениям, физиологически и биохимически отличаются от тех, у кого этих проблем нет. Из-за генетических особенностей у таких людей иначе распределяются и работают нейромедиаторы - вещества, которые регулируют работу мозга. Нарушения бывают разными: обладателям одних постоянно не хватает ощущения удовольствия, носители других испытывают от приятных вещей настолько сильные ощущения, что не могут противиться им.
Под именем лорда Кельвина вошел в историю британский ученый XIX века Уильям Томсон, один из создателей экспериментальной физики. Больше всего он запомнился своими работами по классической термодинамике, особенно касающимися введения в науку абсолютной температурной шкалы. Лорд Кельвин сделал вклад в развитие таких областей, как астрофизика, механика жидкостей и инженерное дело, он участвовал в прокладывании первого подводного телеграфного кабеля, связавшего Европу и Америку, а также в научных и философских дебатах об определении возраста Земли.
Книга посвящена жизни и творчеству выдающегося советского кристаллографа, основоположника и руководителя новейших направлений в отечественной науке о кристаллах, основателя и первого директора единственного в мире Института кристаллографии при Академии наук СССР академика Алексея Васильевича Шубникова (1887—1970). Классические труды ученого по симметрии, кристаллофизике, кристаллогенезису приобрели всемирную известность и открыли новые горизонты в науке. А. В. Шубников является основателем технической кристаллографии.
Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.
«Занимательное дождеведение» – первая книга об истории дождя.Вы узнаете, как большая буря и намерение вступить в брак привели к величайшей охоте на ведьм в мировой истории, в чем тайна рыбных и разноцветных дождей, как люди пытались подчинить себе дождь танцами и перемещением облаков, как дождь вдохновил Вуди Аллена, Рэя Брэдбери и Курта Кобейна, а Даниеля Дефо сделал первым в истории журналистом-синоптиком.Сплетая воедино научные и исторические факты, журналист-эколог Синтия Барнетт раскрывает удивительную связь между дождем, искусством, человеческой историей и нашим будущим.
Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.