Вирус, который сломал планету. Почему SARS-CoV-2 такой особенный и что нам с ним делать - [3]

Шрифт
Интервал


Второе важнейшее свойство вирусов, помимо сверхвысокой скорости размножения (ученые также говорят «репликации»), — повышенная склонность мутировать. Слово «мутация» сегодня окутано, так сказать, зловещим ореолом тайны, но на самом деле этим термином называют любое изменение в геноме вируса — и не только вируса, а, в принципе, любого обладателя генома. Мутации происходят по разным причинам: это может быть результат ошибки в работе фермента, копирующего генетическую информацию, или повреждения нуклеиновых кислот, например ультрафиолетом, рентгеном или особыми веществами-мутагенами. Наконец, мутации могут происходить сами по себе из-за естественного изменения нуклеотидов — «букв», из которых составлен геном.

Чаще всего мутации вредны, так как они изменяют, а то и вовсе делают нечитаемыми записанные в нуклеиновых кислотах «слова»-гены — вспомним заходеровских кита и кота. Но иногда мутации не меняют смысл генетического текста. Так происходит, если в результате замены буквы слово не меняет своего значения. Если перейти от текстовых метафор к реальной жизни, то появление нейтральных мутаций обусловлено двумя механизмами. Чтобы понять их, необходимо вспомнить азы биологии. Основные молекулы, которые обеспечивают все функции живых систем (или частично живых, вроде вирусов), — это белки. Белки — длинные молекулы, составленные из 20 базовых единиц-аминокислот. Последовательности всех белков в зашифрованном виде записаны на молекулах ДНК и РНК — смотря из чего состоит геном конкретного существа. Каждая аминокислота кодируется тремя нуклеотидами — единицами нуклеиновых кислот.

При этом генетический шифр, он же код, избыточен: одну и ту же аминокислоту могут кодировать разные тройки нуклеотидов. И это первая причина, по которой мутации зачастую никак не влияют на работу живых систем, если тройка, получившаяся после изменения, соответствует той же аминокислоте, что исходные три кодирующих нуклеотида. Другой способ получить нейтральную мутацию — изменить аминокислоту так, чтобы новообразованный белок сохранил свои функции. Так происходит, например, если мутация меняет аминокислоту где-нибудь на периферии белка и его работоспособность остается такой же или почти такой же. Если сравнить белок с автомобилем, то такая нейтральная мутация меняет, скажем, цвет кузова или форму фар.

Иногда свойства белка меняются так, что его новые функции приносят живому существу или вирусу ощутимую выгоду. Например, если вирусу для проникновения в клетку необходимо ухватиться за какой-нибудь вырост на ее поверхности, полезной окажется мутация, которая повышает его «липучесть», например за счет того, что «хватающий» вирусный белок прочнее цепляется за торчащий белок клетки.

Способствовать появлению исключительно полезных мутаций вирусы — как и любые другие существа — не могут. Мутация — всегда случайность, так что она может оказаться как выгодной, так и вредной или нейтральной. Но если в некоем организме мутации происходят очень часто, вероятность появления «правильных» мутаций за тот же отрезок времени возрастает (правда, не для этого конкретного организма, а для вида в целом). Для мутирующего частота появлений полезных, вредных и нейтральных мутаций остается неизменной, но так как в целом изменений оказывается намного больше, увеличиваются и шансы возникновения «правильных» мутаций. Вирусы могут увеличивать свою мутагенность>{2} разными способами — например, фермент РНК- или ДНК-полимераза, который копирует их геномы, часто работает халтурно, допуская намного больше ошибок, чем, скажем, ферменты человека или лошади. Кроме того, геном многих вирусов не обязательно записан в стабильной двуцепочечной молекуле ДНК, как у всех остальных живых организмов. Вирусы могут хранить свою наследственную информацию в одноцепочечной ДНК или даже в РНК. Эти молекулы куда менее стабильны, и изменения в них происходят гораздо чаще, чем в ДНК. Особенно склонна к переменам РНК: некоторые РНК-содержащие вирусы мутируют в миллион(!) раз быстрее, чем их хозяева[1]. Такие рекордсмены по мутациям балансируют на грани допустимого: если еще немного увеличить скорость изменений, вирус погибнет, так как с огромной вероятностью за несколько циклов размножения мутации выведут из строя его ключевые ферменты. Мутационной дерзостью РНК-содержащих вирусов пользуются ученые, разрабатывающие средства борьбы с ними (мы подробнее поговорим об этом в разделе, посвященном лекарствам против коронавируса). Как вы уже догадались, его геном записан именно в молекуле РНК.

Счастливчики, которым достались полезные мутации, имеют больше шансов заразить новых хозяев и размножиться. Этот процесс — преимущественное выживание организмов, которые оказались более приспособленными к текущим условиям, — лежит в основе эволюции. И благодаря тому, что вирусы мутируют очень быстро — на порядки быстрее других организмов, — их эволюция также происходит стремительно. Скажем, еще вчера вирус умел размножаться только в летучих мышах, а уже сегодня хоп! — и научился проникать в клетки человека и реплицироваться в них (в реальности речь идет о более долгих сроках, но общий смысл таков).


Еще от автора Ирина Игоревна Якутенко
Воля и самоконтроль. Как гены и мозг мешают нам бороться с соблазнами

Почему одни люди с легкостью отказываются от соблазнов, а другие не в силах им противостоять? Автор книги, собрав самые свежие научные данные, доказывает, что люди, которым сложно сопротивляться искушениям, физиологически и биохимически отличаются от тех, у кого этих проблем нет. Из-­за генетических особенностей у таких людей иначе распределяются и работают нейромедиаторы - вещества, которые регулируют работу мозга. Нарушения бывают разными: обладателям одних постоянно не хватает ощущения удовольствия, носители других испытывают от приятных вещей настолько сильные ощущения, что не могут противиться им.


Рекомендуем почитать
Играют ли коты в кости? Эйнштейн и Шрёдингер в поисках единой теории мироздания

Многие физики всю свою жизнь посвящают исследованию конкретных аспектов физического мира и поэтому не видят общей картины. Эйнштейн и Шрёдингер стремились к большему. Поиски привели их к важным открытиям: Эйнштейна — к теории относительности, а Шрёдингера — к волновому уравнению. Раздразненные найденной частью решения, они надеялись завершить дело всей жизни, создав теорию, объясняющую всё.Эта книга рассказывает о двух великих физиках, о «газетной» войне 1947 года, разрушившей их многолетнюю дружбу, о хрупкой природе сотрудничества и открытий в науке.Пол Хэлперн — знаменитый физик и писатель — написал 14 научно-популярных книг.


Алексей Васильевич Шубников (1887—1970)

Книга посвящена жизни и творчеству выдающегося советского кристаллографа, основоположника и руководителя новейших направлений в отечественной науке о кристаллах, основателя и первого директора единственного в мире Института кристаллографии при Академии наук СССР академика Алексея Васильевича Шубникова (1887—1970). Классические труды ученого по симметрии, кристаллофизике, кристаллогенезису приобрели всемирную известность и открыли новые горизонты в науке. А. В. Шубников является основателем технической кристаллографии.


Магнетизм высокого напряжения. Максвелл. Электромагнитный синтез

Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.


Знание-сила, 2006 № 12 (954)

Ежемесячный научно-популярный и научно-художественный журнал.


Занимательное дождеведение: дождь в истории, науке и искусстве

«Занимательное дождеведение» – первая книга об истории дождя.Вы узнаете, как большая буря и намерение вступить в брак привели к величайшей охоте на ведьм в мировой истории, в чем тайна рыбных и разноцветных дождей, как люди пытались подчинить себе дождь танцами и перемещением облаков, как дождь вдохновил Вуди Аллена, Рэя Брэдбери и Курта Кобейна, а Даниеля Дефо сделал первым в истории журналистом-синоптиком.Сплетая воедино научные и исторические факты, журналист-эколог Синтия Барнетт раскрывает удивительную связь между дождем, искусством, человеческой историей и нашим будущим.


Охотники за нейтрино. Захватывающая погоня за призрачной элементарной частицей

Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.