Вероятности и неприятности. Математика повседневной жизни - [9]
Во введении я говорил, что математики изучают не числа или геометрические фигуры, как может показаться после изучения школьного курса. Они работают со сложными структурами (абстрактными алгебрами, полукольцами, полями, моноидами, топологическими пространствами и прочей абстрактной всячиной), описывают их, вроде бы совершенно не привязываясь к практике, корректно определяют, изучают их свойства, доказывают теоремы. А потом они оттачивают мастерство в поиске подобных структур в самых разных явлениях природы и областях человеческих знаний, совершая удивительно полезные прорывы, в том числе в чисто прикладных областях. Сейчас мы рассмотрим, как строится базис теории вероятностей, основанный на достаточно абстрактном понятии меры.
Мы описали механику монетки и получили области, описывающие множества решений с определенными свойствами. Области — плоские фигуры. Как правильно перейти от них к вероятностям? Нужно измерять наши области, и мы естественным путем приходим к их площади. Площадь — мера плоской фигуры. Это точный математический термин, обозначающий функцию, которая множеству ставит в соответствие некую неотрицательную числовую величину.
В математике есть целый раздел, который называется теорией меры. Она родилась на рубеже XIX–XX веков (у ее истоков стояли французы Эмиль Борель и Анри Леон Лебег) и открыла математикам широкие возможности для анализа очень сложно устроенных объектов: канторовых и фрактальных множеств. Теория меры легла в основу функционального анализа и современной теории вероятностей. Определение вероятности как меры позволяет увидеть все ее основные свойства как для дискретных, так и для непрерывных множеств.
Хотя наша книга не учебник, на этом стоит остановиться, чтобы взглянуть на понятия теории вероятностей как бы с «высоты птичьего полета» и почувствовать вкус «большой» математики. Я прошу читателя не пугаться, если что-то в приводимых ниже определениях покажется непонятным. Если язык математики вам незнаком, воспринимайте это как отрывок текста «в оригинале» на незнакомом вам языке. Он может быть не полностью понятен, но в нем нет искажений «переводчика» и не нарушена целостность. При изучении истории, литературы или иностранных языков необходимо работать или хотя бы знакомиться с оригинальными текстами и полными цитатами. Язык математики тоже требует знакомства с «оригиналом», поскольку в текстах определений и теорем ничего ни прибавить, ни убавить без потерь не получится. Попытки сократить текст «для ясности» порой приводят к серьезным неточностям и вовсе к ошибкам. Итак, вот как звучит определение меры.
Пусть имеется множество X.
Набор его подмножеств F называется алгеброй, если для F верно:
1) пустое множество принадлежит F: ∅ ∈ F;
2) если множество A ∈ F, то и его дополнение X\A ∈ F;
3) если A и B ∈ F, то их объединение A∪B ∈ F.
Из этого определения следует, что пересечение множеств A и B принадлежит F, а также то, что объединение или пересечение любого конечного числа множеств принадлежит F. Говорят, что алгебра замкнута относительно конечного объединения и пересечения.
Набор подмножеств F называется сигма-алгеброй, если вместо 3) потребовать более сильное условие: чтобы объединение счетного числа множеств A>i принадлежало F: если A>i ∈ F, то ∪>iA>i ∈ F.
Из этого определения следует, что и пересечение счетного числа множеств принадлежит F. Иными словами, сигма-алгебра замкнута относительно счетного объединения и пересечения.
Пусть F — алгебра множеств. Функция μ, сопоставляющая любому множеству A∈F какое-нибудь неотрицательное число, называется мерой, если:
1) мера пустого множества равна 0: μ(∅) = 0;
2) для любых непересекающихся множеств A, B ∈ F, то есть A ∩ B = ∅, верно μ(A∪B) = μ(A) + μ(B). Такое свойство называется аддитивностью.
Если же взять F — сигма-алгебру, а во втором условии взять счетное количество непересекающихся множеств, то получится более сильное условие μ(∪>iA>i) = Σ>iμ(A>i), которое называется сигма-аддитивностью. Такая мера называется сигма-аддитивной.
Из определения меры следуют такие свойства:
1) если A включается в B, то мера A не больше, чем у B: если A⊆B, то μ(A) ≤ μ(B);
2) если A включается в B, то мера разности множеств равна разности мер: если A⊆B, то μ(B\A) = μ(B) — μ(A);
3) для любых A и B верно μ(A∪B)= μ(A)+ μ(B) − μ(A∩B).
Знакомые каждому примеры мер — количества (количество яблок в мешке, например), а также длины, площади, объемы фигур.
Количество элементов — так называемая считающая мера. Каждому подмножеству A поставим в соответствие количество элементов в нем: для конечных A положим μ(A) = |A|, а для бесконечных — μ(A) = ∞.
Длина на прямой, площадь на плоскости, объем в пространстве — тоже мера. Во всех случаях условие аддитивности выполняется.
Всякая ли неотрицательная числовая функция может быть мерой? Вовсе нет. Например, возраст ставит человеку в соответствие вполне определенное положительное число. Но он не подходит под определение меры. Предположение о том, что возраст может быть таковой, приводит к забавным парадоксам. Представьте себе кошку, которой пять лет. Естественно, что и правой, и левой половине животного тоже по пять лет, ведь они возникли одновременно. Если бы возраст был мерой, как, например, кошкин вес, то, согласно свойству аддитивности, кошке как сумме ее половинок должно быть уже десять лет. Подобное деление, впрочем, можно продолжить и достичь сколь угодно большого возраста. С другой стороны, мера части не может превосходить меры целого. Иначе говоря, хвост должен быть строго моложе кошки, а шерстинки на хвосте, соответственно, еще моложе. Так мы приходим к выводу, что мельчайшие клетки, из которых состоит пятилетняя кошка, должны были появиться на свет практически только что. Подобные рассуждения можно применить к таким измеримым величинам, как температура или скорость, которые не являются мерами. Два человека бегут не вдвое быстрее одного. По этому поводу в книге Артура Блоха был сформулирован
Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.
Наше здоровье зависит от того, что мы едим. Но как не ошибиться в выборе питания, если число предлагаемых «правильных» диет, как утверждают знающие люди, приближается к 30 тысячам? Люди шарахаются от одной диеты к другой, от вегетарианства к мясоедению, от монодиет к раздельному питанию. Каждый диетолог уверяет, что именно его система питания самая действенная: одни исходят из собственного взгляда на потребности нашего организма, другие опираются на религиозные традиции, третьи обращаются к древним источникам, четвертые видят панацею в восточной медицине… Виктор Конышев пытается разобраться во всем этом разнообразии и — не принимая сторону какой-либо диеты — дает читателю множество полезных советов, а попутно рассказывает, какова судьба съеденных нами генов, какую роль сыграло в эволюции голодание, для чего необходимо ощущать вкус пищи, что и как ели наши далекие предки и еще о многом другом…Виктор Конышев — доктор медицинских наук, диетолог, автор ряда книг о питании.Книга изготовлена в соответствии с Федеральным законом от 29 декабря 2010 г.
Исаак Ньютон возглавил научную революцию, которая в XVII веке охватила западный мир. Ее высшей точкой стала публикация в 1687 году «Математических начал натуральной философии». В этом труде Ньютон показал нам мир, управляемый тремя законами, которые отвечают за движение, и повсеместно действующей силой притяжения. Чтобы составить полное представление об этом уникальном ученом, к перечисленным фундаментальным открытиям необходимо добавить изобретение дифференциального и интегрального исчислений, а также формулировку основных законов оптики.
Петр Ильинский, уроженец С.-Петербурга, выпускник МГУ, много лет работал в Гарвардском университете, в настоящее время живет в Бостоне. Автор многочисленных научных статей, патентов, трех книг и нескольких десятков эссе на культурные, политические и исторические темы в печатной и интернет-прессе США, Европы и России. «Легенда о Вавилоне» — книга не только о более чем двухтысячелетней истории Вавилона и породившей его месопотамской цивилизации, но главным образом об отражении этой истории в библейских текстах и культурных образах, присущих как прошлому, так и настоящему.
Научно-популярный журнал «Открытия и гипотезы» представляет свежий взгляд на самые главные загадки вселенной и человечества, его проблемы и открытия. Никогда еще наука не была такой интересной. Представлены теоретические и практические материалы.
В книге рассказывается о том, как на протяжении нескольких столетий ученые пытались выяснить, почему ночью темно. Оказывается, этот вопрос связан с самым общим устройством нашей Вселенной — с тем, конечна она во времени и в пространстве или бесконечна, расширяется ли она на самом деле и из чего состоит. В книге подробно обсуждаются основные наблюдательные факты, лежащие в основе современной космологии, и история их открытия.Для всех, кто интересуется астрономией и космологией — от старшеклассников до специалистов в других областях науки.
Если вы сомневались, что вам может пригодиться математика, эта книга развеет ваши сомнения. Красота приведенных здесь 10 уравнений в том, что пронизывают все сферы жизни, будь то грамотные ставки, фильтрование значимой информации, точность прогнозов, степень влияния или эффективность рекламы. Если научиться вычленять из происходящего данные и математические модели, то вы начнете видеть взаимосвязи, словно на рентгене. Более того, вы сможете управлять процессами, которые другим кажутся хаотичными. В этом и есть смысл прикладной математики. На русском языке публикуется впервые.
Популяризатор науки мирового уровня Стивен Строгац предлагает обзор основных понятий матанализа и подробно рассказывает о том, как они используются в современной жизни. Автор отказывается от формул, заменяя их простыми графиками и иллюстрациями. Эта книга – не сухое, скучное чтение, которое пугает сложными теоретическими рассуждениями и формулами. В ней много примеров из реальной жизни, которые показывают, почему нам всем нужна математика. Отличная альтернатива стандартным учебникам. Книга будет полезна всем, кто интересуется историей науки и математики, а также тем, кто хочет понять, для чего им нужна (и нужна ли) математика. На русском языке публикуется впервые.
Если упражнения полезны, почему большинство их избегает? Если мы рождены бегать и ходить, почему мы стараемся как можно меньше двигаться? Действительно ли сидячий образ жизни — это новое курение? Убивает ли бег колени и что полезнее — кардио- или силовые тренировки? Дэниел Либерман, профессор эволюционной биологии из Гарварда и один из самых известных исследователей эволюции физической активности человека, рассказывает, как мы эволюционировали, бегая, гуляя, копая и делая другие — нередко вынужденные — «упражнения», а не занимаясь настоящими тренировками ради здоровья. Это увлекательная книга, после прочтения которой вы не только по-другому посмотрите на упражнения (а также на сон, бег, силовые тренировки, игры, драки, прогулки и даже танцы), но и поймете, что для борьбы с ожирением и диабетом недостаточно просто заниматься спортом.