Вероятности и неприятности. Математика повседневной жизни - [13]
Рис. 2.4. Зоны, в которых вероятность оказаться на сгибе карты или на ее краю, превышают 50 %. Числами отмечены значения α
Чаще всего карты имеют по три вертикальные и три горизонтальные складки, что дает вероятность выполнения закона подлости около 60 % при весьма незначительном α = 0,5 %.
Проверяем честность реальной монеты
Теперь мы можем вернуться к вопросу, с которого начался наш разговор: насколько может быть честна реальная монетка? Колмогоровское определение вероятности дополнило ее частотное определение и свело его к геометрическому (как к доле «объема» события в общем «объеме» возможностей). Таким образом, доля площади белых полосок на рис. 2.1 отражает вероятность того, что монетка в результате эксперимента не поменяет исходной ориентации, а доля серых — вероятность получить обратную ориентацию. Монетку мы можем считать честным генератором двух этих равновероятных исходов, только если сможем показать, что общая площадь белых полосок равна общей площади закрашенных.
Но вот беда! Если добросовестно рассматривать всю четверть координатной плоскости, то площадь каждой отдельной полоски на диаграмме окажется бесконечной. Более того, и полосок бесконечное число! Как же сравнивать бесконечные суммы бесконечных значений? Нам опять поможет понятие меры. Аддитивное свойство позволит нам аккуратно показать, что бесконечность не мешает площадям серых и белых областей быть одинаковыми. В явном виде уравнения для наших кривых имеют вид ω = n/t. Если площадь под кривой ω = 1/t равна S, то благодаря свойству аддитивности площадь под кривой ω = n/t будет равна S>n = nS. В свою очередь, для отдельных полосок получаем: S>n — S>n–1 = nS — (n–1)S = S, а это значит, что разница площадей не зависит от «номера» гиперболы. Это не особенность именно гипербол, тот же вывод можно сделать для любой кривой вида y = nf(x). А раз так, попадания в белую или серую часть диаграммы равновероятны для всей области определения, как и ожидается для «честной» монетки.
Рассуждения, которые мы сейчас привели, кажутся достаточно простыми, но дают весьма общий результат, применимый к любым аддитивным величинам. Абстрактное понятие меры позволило нам сравнивать бесконечные величины, оставаясь в рамках логики и здравого смысла.
Абстракции — это хорошо, но можно возразить, что в реальности мы подбрасываем монетки не со всеми возможными параметрами. Как показали эксперименты со скоростной камерой, при бросании монеты рукой угловые скорости попадают в диапазон от 20 до 40 оборотов в секунду, а длительность полета — от половины до одной секунды. Эта область на рис. 2.1 выделена прямоугольником. В ней суммарная площадь белых полосок чуть больше, чем серых, и можно сделать вывод, что вероятность выпадения той же стороны, что была вверху при броске, составит 50,6 %.
В 2007 году Перси Диаконис и соавторы опубликовали статью, в которой дается развернутый анализ процесса подбрасывания монетки. Детальное описание механики летящего и вращающегося диска, который не просто крутится, а еще и прецессирует (его ось вращения сама поворачивается в полете, описывая коническую поверхность), показывает, что при ручном подбрасывании из позиции «орел сверху» вероятность выпадения «орла» составляет 51 %. К смыслу этого результата мы еще вернемся.
Откуда же берется случайность?
В сувенирных лавках можно найти магнитные маятники для «выбора желаний». Это тоже механические генераторы случайности, и их иногда ошибочно называют «хаотическими маятниками». Начав движение с каких-то начальных позиции и скорости, маятник совершает ряд «непредсказуемых» колебаний и наконец останавливается в одном из секторов. Однако колебания и здесь не непредсказуемы, просто они очень чувствительны к начальным условиям. Для каждого сектора, в котором может остановиться маятник, существует область притяжения в пространстве координат-скорости. Это множество таких начальных условий, при которых маятник обязательно притянется к определенной точке в указанном секторе. Точка остановки маятника называется аттрактором — притягивающей точкой. В случае маятника с рис. 2.5 пространство координат и скоростей четырехмерно, и так просто области притяжения показать не удастся. Но если ограничиться двумя секторами и свести задачу к одномерной (такой маятник называется осциллятором Дюффинга), то пространство начальных значений превратится в плоскость, так что области притяжения можно будет увидеть. Они выглядят как замысловатая фигура, напоминающая древний символ «инь-ян» и быстро превращающаяся в узкие полоски, которые разделяют области притяжения.
Рис. 2.5. Области притяжения аттракторов для одномерного маятника желаний — осциллятора Дюффинга
Как и в случае с монетой, немного смещая начальные условия, мы попадаем от одного аттрактора к другому. Так же действует и игральная кость, и рулетка, но они не могут считаться сами по себе генераторами случайности. Это не истинно хаотические системы, и их поведение теоретически можно рассчитать точно. Иначе говоря, вероятностные методы применительно к таким системам помогают восполнить
Еще в древности люди познавали мир, наблюдая за животными и анализируя их поведение. Теперь же, в XXI веке, мы можем делать это совсем на другом уровне. Интернет животных – важнейшее достижение человечества – решает сразу несколько проблем. Во-первых, при помощи него мы становимся ближе к животному миру и лучше понимаем братьев наших меньших. Во-вторых, благодаря этой сенсорной сети мы получаем доступ к новым знаниям и открытиям. В книге представлен подробный анализ «фундаментальных перемен, которые сыграют не меньшую роль для человеческого самосознания, чем открытие жизни на других планетах».
Настоящая книга посвящена жизни и деятельности выдающегося русского агронома И. А. Стебута (1833— 1923). Свыше полувека он занимал наиболее видное место среди деятелей русской агрономии. С именем Стебута связаны последние годы жизни первого сельскохозяйственного высшего учебного заведения в нашей стране — Горыгорецкого земледельческого института (ныне Белорусская сельскохозяйственная академия) и первые тридцать лет жизни Петровской академии (ныне Московская сельскохозяйственная Академия имени К. А. Тимирязева), в которой он возглавлял кафедру земледелия.
Если вы сомневались, что вам может пригодиться математика, эта книга развеет ваши сомнения. Красота приведенных здесь 10 уравнений в том, что пронизывают все сферы жизни, будь то грамотные ставки, фильтрование значимой информации, точность прогнозов, степень влияния или эффективность рекламы. Если научиться вычленять из происходящего данные и математические модели, то вы начнете видеть взаимосвязи, словно на рентгене. Более того, вы сможете управлять процессами, которые другим кажутся хаотичными. В этом и есть смысл прикладной математики. На русском языке публикуется впервые.
В книге рассказывается о том, как на протяжении нескольких столетий ученые пытались выяснить, почему ночью темно. Оказывается, этот вопрос связан с самым общим устройством нашей Вселенной — с тем, конечна она во времени и в пространстве или бесконечна, расширяется ли она на самом деле и из чего состоит. В книге подробно обсуждаются основные наблюдательные факты, лежащие в основе современной космологии, и история их открытия.Для всех, кто интересуется астрономией и космологией — от старшеклассников до специалистов в других областях науки.
Популяризатор науки мирового уровня Стивен Строгац предлагает обзор основных понятий матанализа и подробно рассказывает о том, как они используются в современной жизни. Автор отказывается от формул, заменяя их простыми графиками и иллюстрациями. Эта книга – не сухое, скучное чтение, которое пугает сложными теоретическими рассуждениями и формулами. В ней много примеров из реальной жизни, которые показывают, почему нам всем нужна математика. Отличная альтернатива стандартным учебникам. Книга будет полезна всем, кто интересуется историей науки и математики, а также тем, кто хочет понять, для чего им нужна (и нужна ли) математика. На русском языке публикуется впервые.
Если упражнения полезны, почему большинство их избегает? Если мы рождены бегать и ходить, почему мы стараемся как можно меньше двигаться? Действительно ли сидячий образ жизни — это новое курение? Убивает ли бег колени и что полезнее — кардио- или силовые тренировки? Дэниел Либерман, профессор эволюционной биологии из Гарварда и один из самых известных исследователей эволюции физической активности человека, рассказывает, как мы эволюционировали, бегая, гуляя, копая и делая другие — нередко вынужденные — «упражнения», а не занимаясь настоящими тренировками ради здоровья. Это увлекательная книга, после прочтения которой вы не только по-другому посмотрите на упражнения (а также на сон, бег, силовые тренировки, игры, драки, прогулки и даже танцы), но и поймете, что для борьбы с ожирением и диабетом недостаточно просто заниматься спортом.