Великая Теорема Ферма - [99]
Несмотря на столь медленный прогресс, проблема плотнейшей упаковки шаров летом 1990 года неожиданно попала в заголовки на первых полосах газет. Ву-И Хзянь из Калифорнийского университета в Беркли опубликовал результат, который, по его утверждению, был доказательством гипотезы Кеплера. Первоначально реакция математического сообщества была оптимистической, но когда работа Ву-И Хзяня подверглась тщательному рецензированию, в ней был обнаружен ряд ошибок, и доказательство рухнуло.
Как и в случае с доказательством Уайлса, Хзянь через год представил пересмотренный вариант доказательства, в котором, как он утверждал, ему удалось обойти те проблемы, которые были обнаружены в первоначальном варианте рукописи. К сожалению для Хзяня, его критики продолжали считать, что в его логике остаются пробелы. В письме к Хзяню математик Томас Хейлис попытался объяснить свои сомнения: «Одно предположение, сделанное в Вашей второй статье, представляется мне более фундаментальным и не менее трудным для доказательства, чем остальные… Ваши рассуждения весьма основательно и по существу опираются на это предположение, однако нигде нет и намека на его доказательство».
С тех пор, как Хзянь представил усовершенствованный вариант доказательства, между ним и его критиками шла непрекращающаяся борьба. Правильность предъявленного Хзянем усовершенствованного доказательства остается под вопросом. Во всяком случае, для того, кто хочет доказать гипотезу Кеплера, дверь остается открытой. В 1996 году Дуг Мудер изложил свое ви́дение ситуации вокруг доказательства Хзяня, обнаружив некую интригу:
«Недавно я вернулся с Совместной летней научно-исследовательской конференции по дискретной и вычислительной геометрии, состоявшейся в Маунт Холиоке под эгидой Американского математического общества, Института управленческих наук и Общества промышленной и прикладной математики. Такие конференции проводятся раз в десять лет, поэтому акцент делался на прогрессе, достигнутом за последние десять лет. Хзянь заявил о том, что ему удалось доказать гипотезу Кеплера шесть лет назад. Я обнаружил, что сообщество пришло к согласию по этому поводу: его доказательство "никто не покупает".
На пленарных лекциях и во время неформальных дискуссий неоднократно обсуждались следующие вопросы.
1. В статье Хзяня (опубликованной в "International Journal of Mathematics" в 1993 году) не содержится доказательства гипотезы Кеплера. В лучшем случае это набросок доказательства (на 100 страниц!), его общий ход. Таким доказательство могло бы быть.
2. Эта статья не может считаться даже наброском, так как к некоторым ее утверждениям обнаружены контрпримеры.
3. Столь же необосновано утверждение Хзяня о якобы найденном им доказательстве гипотезы о додекаэдре (и различных других ранее недоказуемых проблем упаковки шаров).
4. Работа над гипотезой Кеплера и гипотезой о додекаэдре должна продолжаться так, как если бы статьи Хзяня никогда не существовали.
В одной из лекций Габор Фейеш-Тот из венгерской Академии наук так отозвался о статье Хзяня: "Эту работу нельзя рассматривать как доказательство. Проблема по-прежнему остается открытой." Ему вторил Томас Хейлис из Мичиганского университета: "Проблема Кеплера остается нерешенной. Я не решил ее. Хзянь не решил ее. Насколько мне известно, никто не решил ее." (Хейлис предсказывал, что его собственный метод позволит решить проблему Кеплера "через год-другой".)
Самое интересное в этой истории — то, что один математик так и не присоединился к общему мнению, а именно сам Хзянь (он не был участником конференции). Хзянь был великолепно осведомлен о контрпримерах и о том, что специалисты не верят его утверждениям, но продолжал выступать с лекциями по всему миру, в которых не уставал снова повторять эти утверждения. Те математики, которым доводилось лично общаться с Хзянем (например, Хейлис и Бездек), считают, что Хзянь никогда не признавал, что в его статье имеются ошибки.
Именно по этой причине «пыль» оседала так медленно. Хзянь впервые заявил о том, что располагает доказательством гипотезы Кеплера в 1990 году, т. е. шесть лет назад. Публичные выступления Хзяня достаточно расплывчаты и неопределенны для того, чтобы быть правдоподобными. Через несколько месяцев после первых заявлений о том, что он располагает доказательством, когда появился первый препринт, в доказательстве сразу же были обнаружены пробелы, а вскоре последовали и контрпримеры. Но Хзянь упорно не прекращал лекционную деятельность, и это обстоятельство создавало впечатление, что он, по-видимому, справляется с теми возражениями, которые возникают. Объем его статьи и то, что текст доказательства претерпел несколько переработок до публикации, еще больше усиливали разноголосицу и неразбериху.
Случай с Хзянем показывает, до какой степени математики полагаются на представления о чести. Математическое сообщество исходит из предположения, что почтенные профессора из самых престижных университетов не станут делать скоропалительные, безосновательные заявления и откажутся от ошибочных утверждений, едва в них будет обнаружен пробел. Тот, кто нарушит сложившуюся систему, основанную на представлениях о профессиональной честности, породит смятение, которое будет длиться долго, так как ни у кого нет ни желания, ни времени следовать повсюду за нарушителем и опровергать его всякий раз, когда он будет высказывать ложные утверждения. (Представьте себе, какой объем работы потребовалось проделать Хейлису, чтобы написать свою разоблачительную статью, опубликованную в 1993 году на страницах журнала "Mathematical Intelligencer", и примите во внимание, что она ничего не дала для математической карьеры самого Хейлиса, — и вы поймете эту проблему. Хзянь опубликовал ответ на статью Хейлиса, но его доводы оказались совершенно несостоятельными. Хейлис счел, что критика ответа Хзяня означала бы вхождение в нескончаемый цикл, на продолжение которого у него просто нет времени.)
Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.
“Ни кошелька, ни жизни” Саймона Сингха и Эдзарда Эрнста – правдивый, непредвзятый и увлекательный рассказ о нетрадиционной медицине. Основная часть книги посвящена четырем самым популярным ее направлениям – акупунктуре, гомеопатии, хиропрактике и траволечению, а в приложении кратко обсуждаются еще свыше тридцати. Авторы с самого начала разъясняют, что представляет собой научный подход и как с его помощью определяют истину, а затем, опираясь на результаты многочисленных научных исследований, страница за страницей приподнимают завесу тайны, скрывающую неутешительную правду о нетрадиционной медицине.
Саймон Сингх получил степень кандидата наук по физике в Кембриджском университете. Во время работы продюсером на Би-би-си снял удостоенный награды Британской академии кино и телевидения документальный фильм «Великая теорема Ферма» и написал бестселлер под тем же названием.Шифры используются с тех пор, как люди научились писать. В «Книге шифров» Саймон Сингх посредством волнующих историй о шпионаже, интригах, интеллектуальном блеске и военной хитрости показывает захватывающую историю криптографии..
Автор — полковник Красной армии (1936). 11 марта 1938 был арестован органами НКВД по обвинению в участии в «антисоветском военном заговоре»; содержался в Ашхабадском управлении НКВД, где подвергался пыткам, виновным себя не признал. 5 сентября 1939 освобождён, реабилитирован, но не вернулся на значимую руководящую работу, а в декабре 1939 был назначен начальником санатория «Аэрофлота» в Ялте. В ноябре 1941, после занятия Ялты немецкими войсками, явился в форме полковника ВВС Красной армии в немецкую комендатуру и заявил о стремлении бороться с большевиками.
Выдающийся русский поэт Юрий Поликарпович Кузнецов был большим другом газеты «Литературная Россия». В память о нём редакция «ЛР» выпускает эту книгу.
«Как раз у дверей дома мы встречаем двух сестер, которые входят с видом скорее спокойным, чем грустным. Я вижу двух красавиц, которые меня удивляют, но более всего меня поражает одна из них, которая делает мне реверанс:– Это г-н шевалье Де Сейигальт?– Да, мадемуазель, очень огорчен вашим несчастьем.– Не окажете ли честь снова подняться к нам?– У меня неотложное дело…».
«Я увидел на холме в пятидесяти шагах от меня пастуха, сопровождавшего стадо из десяти-двенадцати овец, и обратился к нему, чтобы узнать интересующие меня сведения. Я спросил у него, как называется эта деревня, и он ответил, что я нахожусь в Валь-де-Пьядене, что меня удивило из-за длины пути, который я проделал. Я спроси, как зовут хозяев пяти-шести домов, видневшихся вблизи, и обнаружил, что все те, кого он мне назвал, мне знакомы, но я не могу к ним зайти, чтобы не навлечь на них своим появлением неприятности.
Изучение истории телевидения показывает, что важнейшие идеи и открытия, составляющие основу современной телевизионной техники, принадлежат представителям нашей великой Родины. Первое место среди них занимает талантливый русский ученый Борис Львович Розинг, положивший своими работами начало развитию электронного телевидения. В основе его лежит идея использования безынерционного электронного луча для развертки изображений, выдвинутая ученым более 50 лет назад, когда сама электроника была еще в зачаточном состоянии.Выдающаяся роль Б.
За многие десятилетия жизни автору довелось пережить немало интересных событий, общаться с большим количеством людей, от рабочих до министров, побывать на промышленных предприятиях и организациях во всех уголках СССР, от Калининграда до Камчатки, от Мурманска до Еревана и Алма-Аты, работать во всех возможных должностях: от лаборанта до профессора и заведующего кафедрами, заместителя директора ЦНИИ по научной работе, главного инженера, научного руководителя Совета экономического и социального развития Московского района г.