Вечный двигатель — прежде и теперь. От утопии — к науке, от науки — к утопии - [6]

Шрифт
Интервал

Это и прогноз, и призыв: «Ведь можно же!», а не сказочные мечты вроде ковра-самолета или скатерти-самобранки. И главное в этих прогнозах, как отчетливо понимал Бэкон, — это двигатель, без которого самостоятельное движение ни судов, ни колесницы, ни летательных аппаратов невозможно.

Отсюда видно, что Роджер Бэкон был, по-видимому, первым, кто, говоря языком современных терминов, достаточно ясно представлял себе первые три из основных функций техники: энергетическую, технологическую и транспортную, и, более того, необходимость обеспечить первую для развития двух остальных.

Он не упомянул только логическую функцию, необходимую для помощи при умственной деятельности человека. Первый шаг в этом направлении сделал в том же XIII веке его младший современник, другой монах — Раймун Луллий (1235-1316), сконструировавший первую машину для решения логических задач.

При всей гениальности Р. Бэкона[2] и творческих способностях Р. Луллия, они не смогли бы создать ничего подобного, если бы к этому времени не сформировался определенный уровень представлений о дальнейших потребностях и возможностях развития техники, опирающихся на скромные, но достаточно весомые ее успехи. В частности, уже «витало в воздухе» представление о том, что создание универсального двигателя, пригодного для привода машин, возможно.

Потребность в таком двигателе была естественной для ремесленного производства тесного средневекового города, где не хватало рабочих рук.

Ответом на эту потребность и были попытки создания perpetuum mobile, первые проекты которого появились в том же XIII в., в котором жил и работал Р. Бэкон. Теперь, в XX в., легко критиковать ошибки изобретателей XIII в. Современному школьнику, который «проходил» закон сохранения энергии, очевидно, что путь, на который вступили тогда изобретатели универсального двигателя, был ложным. Однако судить на этом основании с высокомерием и даже с иронией (так бывает) о трудах мастеров и изобретателей «мрачного средневековья» нельзя.

В.И. Ленин писал «Исторические заслуги судятся не по тому, что не дали исторические деятели сравнительно с современными требованиями, а по тому, что они дали сравнительно со своими предшественниками» [1.1]. С этих позиций смелая попытка оторваться от «биологической» и «ветро-водяной» энергетики представляет огромный шаг вперед. Работа средневековых изобретателей perpetuum mobile была необходимым этапом проб и ошибок, на базе которых постепенно выкристаллизовался закон сохранения энергии (а затем все те необходимые научные и технические результаты, которые он помог получить).

У самых гениальных мыслителей, ученых и инженеров античного мира, даже таких, как Архимед (ок. 287-212 до н. э.), нет и намека на идею об универсальном двигателе. Не двинулся в этом направлении и такой инженер, как Герон Александрийский (ок. 1 в.), несмотря на то, что он знал намного больше, чем средневековые мыслители. Даже движущая сила нагретого воздуха и водяного пара была ему хорошо известна. Его «эолопил» (рис. 1.1) — прообраз реактивной паровой турбины — был только интересной игрушкой, так же как и устройство, открывавшее двери храма (рис. 1.2). Мысль о том, чтобы приспособить его к делу — использовать как двигатель для машин, даже не возникала. Это и понятно: была дешевая рабочая сила многочисленных рабов, домашних животных, наконец, воды и ветра.

Вспомним, что в Римской империи на одного рабовладельца приходилось в среднем 10 рабов (а у некоторых патрициев их было даже до 1000), Если принять мощность каждого раба за 0,1 кВт, то (даже не считая работу животных) «энерговооруженность» среднего римлянина превышала 1 кВт, и богатого патриция — 10 кВт. Это примерно соответствует современному уровню!

Почему идея создания универсального двигателя, как и первые его проекты в виде ppm, появилась именно в XIII в.?

Это, конечно, не случайность, а результат, исторически обусловленный ходом развития производительных сил средневекового общества; XIII в. занимает в нем особое место. Именно в это время уже в достаточной мере проявились преимущества развитого феодального общества перед рабовладельческим.

Рост городов[3] приводил к созданию крупных городских общин с самостоятельным управлением. Бюргерство, поддерживаемое королевской властью, укреплялось в борьбе с феодалами, и влияние его росло. Труд свободного ремесленника, практическое мастерство (art) стали, в отличие от античных времен, занятием, достойным уважения. Объединявшие ремесленников профессиональные корпорации — цехи были достаточно сильны, чтобы отстаивать интересы своих многочисленных членов. В Париже, например, по данным податной переписи 1291 г. было 4159 цеховых мастеров. В этих условиях мастера были заинтересованы в развитии техники и технологии своей области.

>Рис. 1.1. «Эолопил Герона» 
>Рис. 1.2. Тепловой привод Герона для открывания дверей храма

Количественный и качественный рост ремесленного производства и торговли привел к тому, что средневековая Европа стала собирать и осваивать технические новинки и изобретения со всех стран: из Византии, арабских владений, Индии и даже Китая. Грамотность перестала быть только привилегией монахов — она широко распространяется среди городского населения (вспомним хотя бы средневековый Новгород). Наиболее «весомо и зримо» технический прогресс проявился в XIII в. в архитектуре и строительстве. Стремящаяся вверх каркасная ажурная готика требовала высокого инженерного искусства.


Рекомендуем почитать
Небесные магниты. Природа и принципы космического магнетизма

Книга Дмитрия Соколова задумана не как исследование мира физических явлений, а во многом как сага о самой науке. Рассказывая о магнитных полях, автор стремится показать, как и для чего работают физики. Как устроены магнитные поля далеких звезд? Откуда они появляются, чем различаются, как и на что воздействуют? Как можно изменить магнитное поле Земли и каковы способы наблюдения за ним? В чем заключается феномен Курской магнитной аномалии? Каково строение магнитных полей спиральных галактик и Солнца и как с ними связаны магнитные циклы, которые ученые пытались отслеживать с давних времен? Ответы на эти и многие другие вопросы сопровождаются занимательными сюжетами из жизни ученых и истории отечественной и мировой науки.


Белые карлики. Будущее Вселенной

Перед вами первая книга на русском языке, почти целиком посвященная остывающим реликтам звезд, известным под именем белых карликов. А ведь судьба превратиться в таких обитателей космического пространства ждет почти все звезды, кроме самых массивных. История открытия белых карликов и их изучение насчитывает десятилетия, и автор не только подробно описывает их физическую природу и во многом парадоксальные свойства, но и рассказывает об ученых, посвятивших жизнь этим объектам Большого космоса. Кроме информации о сверхновых звездах и космологических проблемах, связанных с белыми карликами, читатель познакомится с историей радиоастрономии, узнает об открытии пульсаров и квазаров, о первом детектировании, происхождении и свойствах микроволнового реликтового излучения и его роли в исследовании Вселенной.


Атомный проект. Жизнь за «железным занавесом»

Ученик великого Э. Ферми, сотрудник Ф. Жолио-Кюри, почетный член Итальянской академии деи Линчей Бруно Понтекорво родился в Италии, работал во Франции, США, Канаде, Англии, а большую часть своей жизни прожил в России. Бруно Понтекорво известен как один из ведущих физиков эпохи «холодной войны». В то время, как главы государств мечтали о мировом господстве, которое им подарит ядерное оружие, лучшие ученые всего мира боролись за «ядерное равновесие» и всеми возможными способами старались не разрывать прочные научные связи, помогавшие двигать науку вперед.


Новый физический фейерверк

Эта книга поможет вам понять, как устроен окружающий мир и чем занимается физика как наука. Легким и неформальным языком она расскажет о физических законах и явлениях, с которыми мы сталкиваемся в повседневной жизни.


Складки на ткани пространства-времени

Гравитационные волны были предсказаны еще Эйнштейном, но обнаружить их удалось совсем недавно. В отдаленной области Вселенной коллапсировали и слились две черные дыры. Проделав путь, превышающий 1 миллиард световых лет, в сентябре 2015 года они достигли Земли. Два гигантских детектора LIGO зарегистрировали мельчайшую дрожь. Момент первой регистрации гравитационных волн признан сегодня научным прорывом века, открывшим ученым новое понимание процессов, лежавших в основе формирования Вселенной. Книга Говерта Шиллинга – захватывающее повествование о том, как ученые всего мира пытались зафиксировать эту неуловимую рябь космоса: десятилетия исследований, перипетии судеб ученых и проектов, провалы и победы.


Мистер Томпкинс внутри самого себя

В книге, одним из авторов которой является известный американский физик Г. Гамов, в доступной и увлекательной форме рассказывается о достижениях на стыке физики и биологии. Данная книга рассчитана на учащихся старших классов и студентов начальных курсов университетов самых разных специальностей.