Вечный двигатель — прежде и теперь. От утопии — к науке, от науки — к утопии - [13]

Шрифт
Интервал

на самой высокой точке которого находится магнит А. Когда магнитный камень таким образом приготовлен, он должен быть приведен в круглую форму; затем определяются полюсы. Потом, оставляя полюсы неподвижными, обе противоположные стороны в середине выпиливают на манер яйца; кроме этого те две стороны должны быть сплющены, дабы низкая часть занимала самое низкое место и, таким образом, она придет в соприкосновение со стенками вместилища, которое как бы колесо. Когда это исполнено, надевают камень на штифтик так, чтобы северный полюс был немного наклонен по направлению к железной полоске, дабы сила действовала на нее не непосредственно, а под определенным углом.

Таким образом каждая полоска приблизится к северному полюсу и затем, когда она вследствие вращения колеса пройдет мимо северного полюса, она придет к южному, который ее отгонит прочь, и тогда она опять притянется к северному полюсу, так что останется в движении.

Для того чтобы колесо исполняло свою работу скорее, следует включить во вместилище маленький металлический или серебряный камешек Е такой величины, чтобы он легко помещался между двумя полосками. Когда колесо подымется вверх, камешек упадет на противоположную сторону и так как движение колеса по направлению к самой низкой части вечно, то так же вечно будет падение камешка между двумя полосками, ибо он вследствие своей тяжести стремится к центру земли и самому нижнему месту…»

Создать реальную машину на основе такой «технической документации» в стиле алхимических руководств едва ли возможно; сам ученый архиепископ такой попытки, по-видимому, не предпринимал. Более того, он скорее всего не сам придумал такой двигатель, а заимствовал его у кого-то из предшественников.

Несмотря на недостаток сведений о машине Теснериуса, ее идея в общем ясна. Она заключается в том, что каждая железная пластинка, закрепленная на колесе, сначала притягивалась к северному полюсу магнита А, а потом отталкивалась в том же направлении от южного, получая таким образом два последовательных импульса в одну сторону. Затем, при повороте колеса, на ее место приходит следующая пластинка и т.д.

Интересна роль шарика Е, который, периодически падая при вращении колеса с левой его стороны на правую, дает, по мнению автора, дополнительные силы, помогающие его вращению. Таким образом, двигатель Теснериуса представляет собой некий «гибрид» основного (магнитного) и вспомогательного (механического) ppm.

Никаких данных о попытках экспериментальной проверки этого устройства в литературе нет.

Еще более любопытный магнитный ppm предложил любитель науки, изобретатель и коллекционер, иезуит Анастасиус Кирхер[8](1602-1680 гг.). Его двигатель предельно прост. Как видно из рис. 1.16, он состоит из железного круга ABCD, на котором радиально расположены направленные наружу железные стрелы. Этот круг должен вращаться под действием четырех магнитов I, F, G, Н, расположенных на внешнем кольце.

>Рис. 1.16. Магнитный ppm А. Кирхера

Почему Кирхер решил, что круг со стрелами будет вращаться, совершенно непонятно. Все предыдущие изобретатели таких кольцевых двигателей пытались создать какую-то асимметрию, чтобы вызвать силу, направленную по касательной. У Кирхера таких мыслей не возникло. Он мыслит еще в совершенно схоластическом средневековом духе. Он даже серьезно утверждал, что притягательная сила магнита увеличится, если его поместить между двумя листьями растения Isatis Sylvatica.

> Рис. 1.17. Схема магнитного ppm, описанного в книге «Сотня изобретений» Д. Уилкинса

Более интересный и оригинальный магнитный ppm описал в своей книге «Сотня изобретений» (1649 г.) уже известный нам Джон Уилкинс. Схема этого двигателя представлена на рис. 1.17. К шаровому магниту, расположенному на стойке, ведут два наклонных желоба: один (А) прямой, установленный выше, и другой (Б) изогнутый, установленный ниже. Изобретатель считал, что железный шарик, помещенный на верхний желоб, покатится вверх, притягиваемый магнитом. Но так как перед магнитом в верхнем желобе сделано отверстие, шарик провалится в него, скатится по нижнему желобу и через его изогнутую часть снова выскочит наверх и двинется к магниту и т. д. до бесконечности.

Уилкинс, который, как мы уже видели, хорошо разобрался в принципиальных вопросах механических ppm, оказался на высоте и в этом случае. Закончив описание этой конструкции, он пишет: «Хотя это изобретение на первый взгляд кажется возможным, детальное обсуждение покажет его несостоятельность». Основная мысль Уилкинса в этом обсуждении сводится к тому, что если даже магнит достаточно силен, чтобы притянуть шарик от нижней точки, то он тем более не даст ему провалиться через отверстие, расположенное совсем рядом. Если же, наоборот, сила притяжения будет недостаточна, то шарик просто не будет притягиваться. В принципе объяснение Уилкинса правильно; характерно, что он четко представляет себе, как быстро уменьшается сила притяжения магнита с увеличением расстояния до него.

Возможно, Уилкинс учел и взгляды знаменитого Уильяма Гильберта (1544-1603 гг.) — придворного врача королевы Елизаветы Английской, который тоже не поддержал идею этого двигателя.


Рекомендуем почитать
Небесные магниты. Природа и принципы космического магнетизма

Книга Дмитрия Соколова задумана не как исследование мира физических явлений, а во многом как сага о самой науке. Рассказывая о магнитных полях, автор стремится показать, как и для чего работают физики. Как устроены магнитные поля далеких звезд? Откуда они появляются, чем различаются, как и на что воздействуют? Как можно изменить магнитное поле Земли и каковы способы наблюдения за ним? В чем заключается феномен Курской магнитной аномалии? Каково строение магнитных полей спиральных галактик и Солнца и как с ними связаны магнитные циклы, которые ученые пытались отслеживать с давних времен? Ответы на эти и многие другие вопросы сопровождаются занимательными сюжетами из жизни ученых и истории отечественной и мировой науки.


Белые карлики. Будущее Вселенной

Перед вами первая книга на русском языке, почти целиком посвященная остывающим реликтам звезд, известным под именем белых карликов. А ведь судьба превратиться в таких обитателей космического пространства ждет почти все звезды, кроме самых массивных. История открытия белых карликов и их изучение насчитывает десятилетия, и автор не только подробно описывает их физическую природу и во многом парадоксальные свойства, но и рассказывает об ученых, посвятивших жизнь этим объектам Большого космоса. Кроме информации о сверхновых звездах и космологических проблемах, связанных с белыми карликами, читатель познакомится с историей радиоастрономии, узнает об открытии пульсаров и квазаров, о первом детектировании, происхождении и свойствах микроволнового реликтового излучения и его роли в исследовании Вселенной.


Атомный проект. Жизнь за «железным занавесом»

Ученик великого Э. Ферми, сотрудник Ф. Жолио-Кюри, почетный член Итальянской академии деи Линчей Бруно Понтекорво родился в Италии, работал во Франции, США, Канаде, Англии, а большую часть своей жизни прожил в России. Бруно Понтекорво известен как один из ведущих физиков эпохи «холодной войны». В то время, как главы государств мечтали о мировом господстве, которое им подарит ядерное оружие, лучшие ученые всего мира боролись за «ядерное равновесие» и всеми возможными способами старались не разрывать прочные научные связи, помогавшие двигать науку вперед.


Новый физический фейерверк

Эта книга поможет вам понять, как устроен окружающий мир и чем занимается физика как наука. Легким и неформальным языком она расскажет о физических законах и явлениях, с которыми мы сталкиваемся в повседневной жизни.


Складки на ткани пространства-времени

Гравитационные волны были предсказаны еще Эйнштейном, но обнаружить их удалось совсем недавно. В отдаленной области Вселенной коллапсировали и слились две черные дыры. Проделав путь, превышающий 1 миллиард световых лет, в сентябре 2015 года они достигли Земли. Два гигантских детектора LIGO зарегистрировали мельчайшую дрожь. Момент первой регистрации гравитационных волн признан сегодня научным прорывом века, открывшим ученым новое понимание процессов, лежавших в основе формирования Вселенной. Книга Говерта Шиллинга – захватывающее повествование о том, как ученые всего мира пытались зафиксировать эту неуловимую рябь космоса: десятилетия исследований, перипетии судеб ученых и проектов, провалы и победы.


Мистер Томпкинс внутри самого себя

В книге, одним из авторов которой является известный американский физик Г. Гамов, в доступной и увлекательной форме рассказывается о достижениях на стыке физики и биологии. Данная книга рассчитана на учащихся старших классов и студентов начальных курсов университетов самых разных специальностей.