Вечное движение. История одной навязчивой идеи - [5]

Шрифт
Интервал

Проект устройства был сперва предложен парижанином Липпманом в 1900 году, а затем в 1907 году Сведбергом из города Упсала (Швеция). В 1912 году Смолуховский>{9} опубликовал развернутое теоретическое обсуждение данной проблемы. Он показал, что вряд ли стоит надеяться, будто с помощью устройства, содержащего молекулы газа, удастся накапливать эти столь редкие «отступления» от второго начала, поскольку любое подобное устройство само по себе будет подвержено изменениям на молекулярном уровне. Постоянно происходящее перераспределение скоростей движения молекул уничтожит все перепады температуры, которые предполагалось накапливать в устройстве и которые принципиально необходимы для его работы.

Это доказательство представляется весьма убедительным, хотя и обескураживающим. Замечателен вывод, вытекающий из него: второе начало термодинамики для больших промежутков времени справедливо лишь в статистическом смысле.

Интересно, что спустя тринадцать лет, в марте 1925 года, выступая перед сотрудниками американского бюро стандартов, профессор Дебай>{10} заявил: для согласования явления интерференции света с квантовой теорией необходимо допустить, что закон сохранения энергии верен только в статистическом смысле. По его мнению, в очень короткие промежутки времени энергия может создаваться, а на протяжении длительного времени ее среднее значение будет оставаться неизменным. В предположении Дебая содержится скрытый намек на то, что вечное движение первого рода, то есть истинное создание энергии, представляет собой некую «научную вероятность» и даже «возможность».

Поиски вечного движения можно отнести к числу тех научных заблуждений, которые пришли на смену опытам алхимиков и построениям квадратуристов>{11}. Однако столетия, в течение которых умы ученых мужей были заняты подобными тщетными исканиями, обогатили науку знаниями, куда более ценными, чем цели, преследуемые этими фанатиками. Вот что писал по этому поводу в своей «Теории теплоты» Престон: «Алхимики сделали для химии как науки то же, что изобретатели вечных двигателей для натурфилософии. Их поиски неизбежно привели к открытиям величайшей теоретической и практической важности».

Одним из первых осознал важность проблемы вечного движения для экспериментальной науки Симон Стевин, родившийся в 1548 году в Брюгге>{12}. Этот великий математик был также человеком практики: среди его изобретений, относящихся к началу XVII века, есть повозка под парусами, на которой он катался вместе с друзьями по побережью Нидерландов. Стевин был ярым сторонником десятичной денежной системы и десятичных дробей (напомним, что эти дроби тогда еще не получили повсеместного применения в практике повседневных вычислений); он ввел в физику понятие устойчивого и неустойчивого равновесия. Однако наиболее важным его достижением в контексте данной книги является доказательство закона равновесия тел на наклонной плоскости, которое он получил, показав, что вечного движения не существует>{13}.

Рис. 1. Стевин показал, что четырнадцать одинаковых шаров, соединенных однородным шнуром, так располагаются на треугольной раме ABC, что четыре шара, лежащие на наклонной плоскости АС рамы, и два шара, лежащие на плоскости CB рамы, уравновешиваются восемью шарами на кривой AEB.


Его рассуждения сводились к следующему. Вообразим, что на гибкий шнур, соединенный в кольцо, на равном расстоянии друг от друга нанизано четырнадцать шаров, одинаковых по весу. Шнур подвешен на подставку треугольной формы, состоящую из двух неравных наклонных плоскостей и одного общего горизонтального основания. Не нарушая общности рассуждений, положим ради простоты, что AC = 2BC, а на участке АЕВ шнура расположено восемь шаров. При этом возможны два случая: либо шары находятся в состоянии равновесия, либо равновесие отсутствует. В последнем случае начнется движение шаров, которое, однако, не изменит их первоначального расположения на подставке. На участке АЕВ всегда будет восемь шаров, на плоскости АС — четыре, а на плоскости ВС — два. Следовательно, движение такой системы будет непрерывным, иными словами, вечным. Стевин не только не допускал этого, но считал нарушение равновесия в таких условиях совершенно невозможным. В своей книге по теории наклонных плоскостей, опубликованной в конце шестнадцатого столетия, он подробно рассмотрел эту проблему. Прежде всего он показал, что при удалении восьми шаров с участка AEB равновесие не нарушается, поскольку четыре шара на кривой АЕ уравновешивают четыре шара на кривой ЕВ. Именно по этой причине и сохраняется равновесие между четырьмя шарами на большей плоскости (АС) и двумя шарами на меньшей (СВ). Если даже расположить плоскость СВ вертикально так, что останется только одна наклонная плоскость АС, условие равновесия будет по-прежнему выполняться. Таким образом, мы нашли, что соотношение сумм весов шаров должно быть таким же, как соотношение между длинами плоскостей, то есть 4×2 = АС×ВС. Если теперь принять сумму весов двух шаров за действующую силу, а сумму весов четырех шаров за противодействующую, то получится следующая пропорция:


Рекомендуем почитать
Юный техник, 2014 № 10

Популярный детский и юношеский журнал.


Юный техник, 2014 № 09

Популярный детский и юношеский журнал.


Юный техник, 2014 № 06

Популярный детский и юношеский журнал.


Наука и техника, 2007 № 02 (9)

«Наука и техника» — ежемесячный научно-популярный иллюстрированный журнал широкого профиля.Официальный сайт http://naukatehnika.com.


Поистине светлая идея. Эдисон. Электрическое освещение

Томас Альва Эдисон — один из тех людей, кто внес наибольший вклад в тот облик мира, каким мы видим его сегодня. Этот американский изобретатель, самый плодовитый в XX веке, запатентовал более тысячи изобретений, которые еще при жизни сделали его легендарным. Он участвовал в создании фонографа, телеграфа, телефона и первых аппаратов, запечатлевающих движение, — предшественников кинематографа. Однако нет никаких сомнений в том, что его главное достижение — это электрическое освещение, пришедшее во все уголки планеты с созданием лампы накаливания, а также разработка первой электростанции.


Юный техник, 2001 № 08

Популярный детский и юношеский журнал.