В просторы космоса, в глубины атома [Пособие для учащихся] - [7]
Несмотря на все трудности, современные Гулливеры от физики и химии добились поразительных результатов в изучении сложных молекулярных структур и их взаимодействий. Вот несколько таких результатов в коротком и вольном пересказе, несколько примеров из многих возможных.
Примеры эти взяты из статей в научных журналах, и в конце каждого нашего рассказа названы авторы работы и ее официальное название.
Пример первый — молекула-самосвал. Скелетная схема молекулы антибиотика валиномицина очень напоминает цветок. В центре — ион калия (К>+), его удерживают шесть «натертых шерстью янтарных палочек» — шесть электрических диполей, отростков молекулы, на концах которых сконцентрирован некоторый отрицательный заряд. Такая схема валиномицина соответствует случаю, когда молекула находится в среде со сравнительно высокой концентрацией положительных ионов, в частности ионов калия. Но стоит валиномицину перейти в другую среду, с меньшей концентрацией зарядов, как «цветок» раскроется — у молекулы появится возможность завязать прочные внешние связи, и для этого она пожертвует некоторыми своими внутренними межатомными связями. В итоге произойдет перераспределение электрического заряда в молекуле, исчезнут диполи, удерживавшие ион калия, и он вырвется на свободу. Но когда валиномицин вернется в прежнюю среду, то он вернется и к своей прежней конформации и снова сможет удерживать ион калия, втянув его в центр «цветка» прямо «с улицы».
Подобная конформационная перестройка валиномицина — это не просто виртуозные гимнастические упражнения. Валиномицин — грузовик, он перевозит ионы калия через клеточную мембрану, активно участвуя тем самым в жизнедеятельности клетки, участвуя в таинстве жизни. Хотя сам он, конечно, не более чем транспортная машина, машина-молекула. (Определение конформационной перестройки валиномицина. Академик Ю. А. Овчинников с сотрудниками. Институт биорганической химии им. М. М. Шемякина АН СССР.)
Пример второй — левые и правые машины. «Киральность» — термин старый, однако, кажется, еще не устоявшийся, иногда вместо него пользуются терминами «спиральность», «закрученность», «ручность». Введены эти термины для того, чтобы подчеркнуть, что два совершенно одинаковых, казалось бы, объекта могут иметь особые пространственные различия, быть как бы зеркальными отражениями друг друга. Могут, как принято говорить, иметь разную киральность. У человека две одинаковые руки разной киральности — правая и левая. Здороваясь, мы протягиваем друг другу руки одинаковой (правой) киральности.
Совершенно одинаковые по всем статьям молекулы также могут иметь разную киральность, как, скажем, совершенно одинаковые здания с совершенно одинаковыми, но направленными в противоположные стороны пристройками-флигелями. Эти одинаковые, но, так сказать, направленные в разные стороны молекулы называют понятно и просто — «левыми» и «правыми». Кристаллы из «левых» или из «правых» молекул были изучены еще великим Пастером. Но как поведут себя эти молекулы в жидкой фазе, в растворе, где они смогут свободно двигаться, объединяться или отталкиваться, демонстрировать свои симпатии и антипатии? Ответить на такой вопрос удалось только в самое последнее время, и обнаружилось при этом, что по некоторым важным показателям соединения из молекул одинаковой киральности имеют заметные преимущества перед точно такими же «лево-правыми» соединениями. Отсюда, может быть, начинается путь к объяснению необъяснимой пока тайны живой природы — все живое построено в основном из молекул одной («левой») киральности.
В то же время в неживой природе ни один из двух видов киральности не имеет преимущества. Вполне возможно, что рождение нашего «левого» живого мира — это не более чем результат случайности. В самых первых химических соединениях, ставших основой для зарождения и развития жизни, «левых» молекул оказалось чуть больше. И это в итоге определило победу «левых» соединений над своими «правыми» конкурентами: подобно снежной лавине, разрастался мир «левых» живых организмов, не попавших в гибельный процесс объединения «левых» и «правых» молекул. (Взаимодействия молекул различной киральности в растворах. Академик М. И. Кабачник, доктор физико-математических наук Э. И. Федин с сотрудниками. Институт элементоорганических соединений АН СССР.)
Пример третий — машины-молекулы при сверххолоде. Зажигая спичку или замораживая продукты в холодильнике, вы иллюстрируете один из основных законов химии — закон Аррениуса, который утверждает: скорость химических реакций увеличивается с ростом температуры. Из этого закона следует, что вблизи абсолютного нуля (—273,16 °C) все химические реакции вообще должны прекратиться. Но вот точная теория, расчеты, а затем и эксперименты, сначала качественные и, наконец, количественные, показали: никакого прекращения реакций нет; машины-молекулы, хотя и медленно, но продолжают работать в условиях предельного холода. Продолжают работать вопреки всем законам классической механики, но в полном согласии с «безумными» законами механики квантовой. Эксперименты, кстати, показали, что при сверхнизких температурах могут строиться большие сложные молекулы. А это дает повод думать о «холодной предыстории жизни», о том, что в безжизненном, холодном космосе миллиарды лет могли создаваться полуфабрикаты для будущих «теплых» живых систем. (Исследование химических реакций вблизи абсолютного нуля. Член-корреспондент Академии наук В. И. Гольданский с сотрудниками. Институт химической физики АН СССР; профессор А. Д. Абкин с сотрудниками. Физико-химический институт им. Л. Я. Карпова.)
В книге весьма подробно и в то же время очень доступно рассказано об электричестве и его использовании в энергетике и связи. Используя 400 специально разработанных иллюстраций, автор рассказывает об истории изучения электричества, о сложившихся основных системах постоянного и переменного тока и о той важной роли, которая досталась электричеству в энергетике нашего мира. Рудольф Анатольевич Сворень — автор многих популярных книг о физике и электронике, известный научный журналист, радиоинженер и кандидат педагогических наук, много лет проработавший в редакции журнала “Наука и жизнь” заместителем главного редактора.
Книга «Ваш радиоприемник» — удачный пример того, как можно просто, занимательно и в то же время достаточно конкретно рассказать о радиоэлектронной технике. Эта книга будет полезной не только для тех, кто хочет поближе познакомиться со своим приемником, но в первую очередь для тех, кто испытывает потребность познакомиться с основами современной радиоэлектроники.
Книга написана простым языком и ориентирована на средний и старший школьный возраст. В ней автор доступным языком излагает основы работы полупроводниковых приборов. Книга сопровождается множеством иллюстраций, благодаря чему шаг за шагом постигается сложный мир внутри транзисторов.Поскольку книга больше ориентирована на детей, то повествование идет буквально "на пальцах", не используется никаких сложных формул или вычислений — только как полупроводниковые приборы работают и как их использовать.
В этой книге рассказано о ламповых усилителях низкой частоты, громкоговорителях и их акустическом оформлении, о некоторых путях улучшения качества звучания радиоаппаратуры. Рассказ об основах радиоэлектроники и принципах усиления иллюстрируется схемами и описаниями радиолюбительских конструкций: радиограммофонов, высококачественных усилителей, простого школьного радиоузла, акустических агрегатов.
Эта книга для тех, кто хочет стать радиолюбителем-конструктором и строить замечательные электронные приборы — приемники, усилители, радиостанции, магнитофоны. Начиная с простейшего детекторного приемника, постепенно, шаг за шагом, читатель познакомится с принципом работы, схемами и устройством различных самодельных приемников, включая многоламповые супергетеродины.В книге коротко изложены элементы электротехники, которые нужно знать радиолюбителю, описана работа основных радиотехнических деталей — электронных ламп, полупроводниковых приборов, трансформаторов, колебательных контуров, а также приводятся справочные данные, необходимые радиолюбителю для самостоятельной работы.
Предлагаем вашему вниманию адаптированную на современный язык уникальную монографию российского историка Сергея Григорьевича Сватикова. Книга посвящена донскому казачеству и является интересным исследованием гражданской и социально-политической истории Дона. В работе было использовано издание 1924 года, выпущенное Донской Исторической комиссией. Сватиков изучил колоссальное количество монографий, общих трудов, статей и различных материалов, которые до него в отношении Дона не были проработаны. История казачества представляет громадный интерес как ценный опыт разрешения самим народом вековых задач построения жизни на началах свободы и равенства.
Монография доктора исторических наук Андрея Юрьевича Митрофанова рассматривает военно-политическую обстановку, сложившуюся вокруг византийской империи накануне захвата власти Алексеем Комнином в 1081 году, и исследует основные военные кампании этого императора, тактику и вооружение его армии. выводы относительно характера военно-политической стратегии Алексея Комнина автор делает, опираясь на известный памятник византийской исторической литературы – «Алексиаду» Анны Комниной, а также «Анналы» Иоанна Зонары, «Стратегикон» Катакалона Кекавмена, латинские и сельджукские исторические сочинения. В работе приводятся новые доказательства монгольского происхождения династии великих Сельджукидов и новые аргументы в пользу радикального изменения тактики варяжской гвардии в эпоху Алексея Комнина, рассматриваются процессы вестернизации византийской армии накануне Первого Крестового похода.
Виктор Пронин пишет о героях, которые решают острые нравственные проблемы. В конфликтных ситуациях им приходится делать выбор между добром и злом, отстаивать свои убеждения или изменять им — тогда человек неизбежно теряет многое.
«Любая история, в том числе история развития жизни на Земле, – это замысловатое переплетение причин и следствий. Убери что-то одно, и все остальное изменится до неузнаваемости» – с этих слов и знаменитого примера с бабочкой из рассказа Рэя Брэдбери палеоэнтомолог Александр Храмов начинает свой удивительный рассказ о шестиногих хозяевах планеты. Мы отмахиваемся от мух и комаров, сражаемся с тараканами, обходим стороной муравейники, что уж говорить о вшах! Только не будь вшей, человек остался бы волосатым, как шимпанзе.
Настоящая монография посвящена изучению системы исторического образования и исторической науки в рамках сибирского научно-образовательного комплекса второй половины 1920-х – первой половины 1950-х гг. Период сталинизма в истории нашей страны характеризуется определенной дихотомией. С одной стороны, это время диктатуры коммунистической партии во всех сферах жизни советского общества, политических репрессий и идеологических кампаний. С другой стороны, именно в эти годы были заложены базовые институциональные основы развития исторического образования, исторической науки, принципов взаимоотношения исторического сообщества с государством, которые определили это развитие на десятилетия вперед, в том числе сохранившись во многих чертах и до сегодняшнего времени.
Эксперты пророчат, что следующие 50 лет будут определяться взаимоотношениями людей и технологий. Грядущие изобретения, несомненно, изменят нашу жизнь, вопрос состоит в том, до какой степени? Чего мы ждем от новых технологий и что хотим получить с их помощью? Как они изменят сферу медиа, экономику, здравоохранение, образование и нашу повседневную жизнь в целом? Ричард Уотсон призывает задуматься о современном обществе и представить, какой мир мы хотим создать в будущем. Он доступно и интересно исследует возможное влияние технологий на все сферы нашей жизни.