В поисках «энергетической капсулы» - [17]

Шрифт
Интервал


Раньше, в XVII...XVIII веках, электричество представляли себе как некую невесомую «электрическую жидкость», которая может «вливаться» в проводник. Отсюда по величине заряда – количеству этой «электрической жидкости» стали определять емкость конденсатора, как какой-нибудь фляги или бутыли. Ученые давно заметили, что чем обширнее площадь обкладок и чем меньше расстояние, зазор между ними, тем больше емкость конденсатора. Однако делать зазор слишком малым нельзя – при высоком напряжении, приложенном к конденсатору, может наступить «пробой» зазора искрой. В лучшем случае конденсатор потеряет свой заряд, а в худшем – разрушится, причем не исключено, что со взрывом. Сантиметровый слой воздуха, например, пробивается при напряжении 30 000 вольт. Понижать же напряжение невыгодно. Ведь в конечном итоге нас интересует не просто емкость конденсатора, а его энергоемкость, равная произведению заряда на напряжение. Поэтому уменьшение зазора между обкладками – это не путь к повышению энергоемкости. Выход один – увеличивать площадь обкладок.


И еще очень интересное свойство конденсатора открылось ученым. Если помещать между его обкладками различные непроводящие материалы – диэлектрики, емкость конденсатора может резко изменяться. Эту способность диэлектриков изменять емкость конденсатора назвали диэлектрической проницаемостью. Было установлено: чем больше величина диэлектрической проницаемости, тем больше при прочих равных условиях емкость конденсатора, обкладки которого разделены диэлектриком.


Диэлектрическая проницаемость равна в вакууме единице. Очень близка к этому значению диэлектрическая проницаемость воздуха, поэтому воздушные конденсаторы имеют очень малую емкость. Если идти в сторону увеличения диэлектрической проницаемости, то ее значение для парафина – 2, для фарфора, стекла – до 7, а для воды необычно много – 81. То есть с помощью воды можно получить конденсатор, в 81 раз более емкий, чем воздушный.


Однако при подсчете плотности энергии обычных конденсаторов, например, электролитических, которые так широко распространены в радиотехнике, выясняется, что она очень низка, не выше, чем у обычных стальных пружин.


За единицу емкости конденсаторов принята фарада. Это очень крупная единица, такую емкость мог бы иметь, например, шар, диаметр которого равен 18 миллионам километров, то есть в полторы тысячи раз более крупный, нежели наша Земля! Разумеется, емкость существующих конденсаторов значительно меньше, и поэтому ее измеряют в миллионных долях фарады – микрофарадах или в единицах, еще в миллион раз меньших, – пикофарадах.


Если взвесить самый заурядный электролитический конденсатор емкостью 10 микрофарад при напряжении 300 вольт, то масса его окажется несколько десятков граммов. А энергии в этом конденсаторе будет менее половины джоуля. Стало быть, плотность энергии составит около 10 джоулей на килограмм массы. Хорошие конденсаторы могут накопить энергии раз в десять больше, но и это очень немного.


Чтобы резко повысить емкость конденсаторов, приходится прибегать ко всяким ухищрениям. И надо сказать, в последнее время ученые здесь преуспели. В Японии, например, несколько лет назад был изготовлен конденсатор из... активного угля!


Известно, что активный уголь, приготовляемый кипячением Древесного угля в воде, имеет огромную поверхность в единице объема. Такую поверхность образуют поры, из которых водой были вымыты соли. Благодаря этому активный уголь отлично поглощает запахи, яды, различные газы. Им заполняют противогазы, его принимают при отравлениях, используют во многих других случаях. Именно поверхность активного угля и заинтересовала японских ученых.


Уголь пропитывают раствором солей щелочных металлов – натрия, калия, лития – в органическом растворителе, и происходит чудо – емкость одного кубического сантиметра такого конденсатора возрастает до десяти и более фарад! Иначе говоря, до емкости шара в пустоте, имеющего диаметр в 15 тысяч раз больше диаметра Земли, больше чем расстояние от Земли до Солнца! Но в отношении энергии это почти ничего не дало – конденсатор из активного угля выдерживает лишь очень низкое напряжение. Плотность энергии этого конденсатора составила примерно 1 килоджоуль на килограмм, что гораздо выше, чем у обычных конденсаторов, но все-таки крайне мало.


Венгерские ученые пошли по другому пути. Они создали особые пластмассы, обладающие необычайно высокими диэлектрической проницаемостью и пробойным напряжением. Кроме того, они выяснили, что самая высокая в природе диэлектрическая проницаемость – 130000 единиц! – у дезоксирибонуклеиновой кислоты, той самой ДНК, которая несет генетическую информацию. Если обычный конденсатор емкостью 10 микрофарад заполнить в качестве электролита ДНК, то при напряжении 300 вольт плотность его энергии будет порядка 20...200 килоджоулей на килограмм. Этот показатель лучше, чем таковой у газовых аккумуляторов.


Тут мне пришло в голову, что если объединить открытия японских и венгерских ученых, то есть пропитать активный уголь дезоксирибонуклеиновой кислотой, удельная энергия конденсатора, судя по всему, выросла бы еще раз в сто. Тогда масса «энергетической капсулы», необходимой автомобилю для прохождения ста километров, могла бы быть не более одного-двух килограммов!


Еще от автора Нурбей Владимирович Гулиа
«Зеркальная» сауна

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Удивительная физика

В увлекательной форме изложены оставшиеся за рамками школьных учебников сведения по основным разделам физики, описаны драматические истории великих научных открытий, приведены нестандартные подходы к пониманию физических явлений, нетрадиционные взгляды на научное наследие известных ученых.Для учителей, старшеклассников, студентов, а также для всех, кто желает открыть для себя незнакомую, полную тайн и парадоксов физику.


Удивительная механика

Нурбей Владимирович Гулиа – профессор, доктор технических наук, рассказывает в своей книге о работе над созданием эффективного накопителя энергии – «энергетической капсулы», которая позволила бы действительно по-хозяйски, бережно использовать энергию, даваемую нам природой. Книга должна помочь молодому читателю найти свой путь самореализации в изобретательском творчестве, без которого невозможно решение ни одной научно-технической задачи, тем более в таких важных областях экономики, как энергетика и транспорт.


Физика: Парадоксальная механика в вопросах и ответах

В увлекательной форме автор пособия рассказывает о парадоксах механики, приводит примеры и решает задачи, задает непростые вопросы и отвечает на них, объясняя физическую суть привычных явлений, изучаемых в школьном курсе механики.Для учителей общеобразовательных школ.


Приватная жизнь профессора  механики

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Русский декамерон, или О событиях загадочных и невероятных

В книге рассказывается о загадочных и таинственных случаях, происшедших с автором, жизнь которого оказалась весьма богатой на них. Автор - доктор наук, профессор, подвергает эти случаи научному анализу, классифицирует их, а где можно, и дает им объяснение. Существенное место в книге уделено парадоксальным комическим ситуациям, в которые часто попадал автор. Книга написана живым, разговорным языком; автор предельно откровенен с читателями.


Рекомендуем почитать
Капиталистическое отчуждение труда и кризис современной цивилизации

В монографии исследуются эволюция капиталистического отчуждения труда в течение последних ста лет, возникновение новых форм отчуждения, влияние растущего отчуждения на развитие образования, науки, культуры, личности. Исследование основывается на материалах философских, социологических и исторических работ.


Тайны продуктов питания

Пища всегда была нашей естественной и неизбежной потребностью, но отношение к ней менялось с изменением социальных условий. Красноречивым свидетельством этого является тот огромный интерес к разнообразным продуктам питания, к их природе и свойствам, который проявляет сегодня каждый из нас. Только, достигнув высокого уровня жизни и культуры, человек, свободный от проблемы — где и как добыть пищу, имеет возможность выбирать из огромного ассортимента высококачественных продуктов то, что отвечает его вкусу, что полезнее и нужнее ему, и не только выбирать, но и руководить своим питанием, строить его сообразно требованиям науки о питании и запросам собственного организма.


Социально-культурные проекты Юргена Хабермаса

В работе проанализированы малоисследованные в нашей литературе социально-культурные концепции выдающегося немецкого философа, получившие названия «радикализации критического самосознания индивида», «просвещенной общественности», «коммуникативной радициональности», а также «теоретиколингвистическая» и «психоаналитическая» модели. Автором показано, что основной смысл социокультурных концепций Ю. Хабермаса состоит не только в критико-рефлексивном, но и конструктивном отношении к социальной реальности, развивающем просветительские традиции незавершенного проекта модерна.


Пьесы

Пьесы. Фантастические и прозаические.


Вторжение: Взгляд из России. Чехословакия, август 1968

Пражская весна – процесс демократизации общественной и политической жизни в Чехословакии – был с энтузиазмом поддержан большинством населения Чехословацкой социалистической республики. 21 августа этот процесс был прерван вторжением в ЧССР войск пяти стран Варшавского договора – СССР, ГДР, Польши, Румынии и Венгрии. В советских средствах массовой информации вторжение преподносилось как акт «братской помощи» народам Чехословакии, единодушно одобряемый всем советским народом. Чешский журналист Йозеф Паздерка поставил своей целью выяснить, как в действительности воспринимались в СССР события августа 1968-го.


Сандинистская революция в Никарагуа. Предыстория и последствия

Книга посвящена первой успешной вооруженной революции в Латинской Америке после кубинской – Сандинистской революции в Никарагуа, победившей в июле 1979 года.В книге дан краткий очерк истории Никарагуа, подробно описана борьба генерала Аугусто Сандино против американской оккупации в 1927–1933 годах. Анализируется военная и экономическая политика диктатуры клана Сомосы (1936–1979 годы), позволившая ей так долго и эффективно подавлять народное недовольство. Особое внимание уделяется роли США в укреплении режима Сомосы, а также истории Сандинистского фронта национального освобождения (СФНО) – той силы, которая в итоге смогла победоносно завершить революцию.