В поисках частицы Бога, или Охота на бозон Хиггса - [75]
Суета по поводу сценариев конца света в 1999 году спровоцировала серьезные дебаты относительно роли науки, характера управления рисками и ответственности ученых перед обществом. Но уже ничто не могло отвлечь и остановить физиков в их стремлении к истине. В Фермилабе близились к завершению работы по серьезному обновлению “Теватрона”, затеянного для улучшения его технических характеристик. После переделки машина должна была приступить к своей первой серьезной охоте на бозоны Хиггса. А в ЦЕРНе коллайдеру LEP оставался всего лишь год работы до закрытия, после чего “Теватрон” становился лидером в гонке за неуловимой частицей.
Глава 9
Гордиев узел
Коллайдер уже один раз переделывали для работы на энергиях вдвое больших, чем та, на которую он был рассчитан, но и в усовершенствованном ускорителе ни в одном столкновении не обнаружилось ничего похожего на частицу Хиггса. Теперь все, что можно было сделать, — это выжимать максимум энергии из дряхлеющей машины и ждать. Если удача все-таки улыбнется ученым, то они увидят неуловимый бозон, полагали руководители ЦЕРНа.
Выжимание еще большей энергии из коллайдера, который уже и так работает на полную мощность, требует творческого подхода. При этом набор средств невелик. Имея дело с такой уникальной машиной, как LEP, нельзя просто повернуть большой переключатель в следующее положение или позвонить в энергетическую компанию и попросить, чтобы вам добавили чуточку мощности. Опять же, для таких машин не написано руководство для пользователей, полистав которое вы легко выполните нужную операцию.
Руководил работами по выведению коллайдера за конструктивный предел Патрик Жано — французский экспериментатор, поступивший на работу в ЦЕРН в 1987 году. Если в Голливуде когда-нибудь захотят снять фильм об охоте на бозон Хиггса (а о ЦЕРНе уже сняли несколько фильмов, правда весьма сомнительного качества), Жано будет находкой для киношников. Ему около сорока пяти лет, и у него есть все необходимое для супергероя — прекрасная внешность и блестящий ум. Но еще более важна его жизненная позиция. Жано — человек бескомпромиссный и страстный, и не скрывает этого.
Прежде чем попытаться увеличить мощность крупнейшей в мире машины, вы должны знать, что происходит “под капотом”. В 1999 году тем местом, куда можно было пойти и расспросить об устройстве LEP, было строение номер 874, через дорогу от главного кампуса ЦЕРНа. Там располагался мозг коллайдера — центр управления LEP. Отсюда к каждому блоку машины под землей было протянуто оптическое волокно общей длиной более 3000 километров. По нему шли сигналы к машине и обратно в диспетчерскую, где посменно дежурили бригады техников — они неотрывно наблюдали за причудливым танцем сотен тысяч сигналов, непрерывно возникавших на экранах компьютеров.
Жано провел немалую часть 1999 года в диспетчерской. Он беседовал с операторами, слушал их обсуждения, наблюдал, как они работают. Он проник в самые глубинные тайны машины. “Я собрал все сведения, какие смог, чтобы понять, как улучшить работу машины и в конце концов попробовать это сделать, — вспоминал однажды Жано в беседе, происходившей в столовой ЦЕРНа. — Директор по исследованиям поставил передо мной вполне определенную задачу: ввести LEP в режим, в котором мы могли бы обнаружить бозон Хиггса, конечно, если он там был”.
Бозон Хиггса — хитрый зверь, его трудно поймать в ловушку. Частица так неустойчива, живет она всего в 10>-16 секунды. Это означает, что, даже если эти бозоны появятся в LEP, они исчезнут в мгновение ока. Физики, специалисты по элементарным частицам, говорят, что частица Хиггса не умеет летать, то есть время ее жизни столь коротко, что нет никакой надежды увидеть ее саму в детекторе. Едва родившись, она сразу распадется на другие, менее интересные для физиков частицы, издав метафорическое шипение. Осложняющим фактором является то, что бозоны Хиггса скорее всего никогда не возникают поодиночке. По-видимому, они рождаются вместе с Z-частицами, которые, в свою очередь, распадаются на кучу других частиц. Чтобы найти бозон Хиггса, вы должны идентифицировать треки всех частиц, образованные ими в детекторе, а затем “отмотать пленку” назад и проверить, а не родилась ли какая-либо из этих частиц из неуловимого бозона Хиггса.
Дело это очень непростое. Другие частицы, рожденные в машине, могли подавать сигналы, похожие на сигналы от бозона Хиггса. Например, как только на ускорителе LEP была достигнута энергия 182 ГэВ, что произошло в конце 1997 года, в столкновениях уже выделялось достаточно энергии для рождения двух Z-частиц. Каждая из них может распадаться на два кварка, производя в сумме четыре частицы. Если вместе с Z-частицей родился бы бозон Хиггса, и та и другая частицы распались бы на кварки, и в обоих случаях картины треков были бы похожи.
В книге, одним из авторов которой является известный американский физик Г. Гамов, в доступной и увлекательной форме рассказывается о достижениях на стыке физики и биологии. Данная книга рассчитана на учащихся старших классов и студентов начальных курсов университетов самых разных специальностей.
Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.
Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.
Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.
Исаак Ньютон возглавил научную революцию, которая в XVII веке охватила западный мир. Ее высшей точкой стала публикация в 1687 году «Математических начал натуральной философии». В этом труде Ньютон показал нам мир, управляемый тремя законами, которые отвечают за движение, и повсеместно действующей силой притяжения. Чтобы составить полное представление об этом уникальном ученом, к перечисленным фундаментальным открытиям необходимо добавить изобретение дифференциального и интегрального исчислений, а также формулировку основных законов оптики.
Ричард МурКлиматическая наука: наблюдения и модели.21.01.2010Источник: Richard K. Moore, Gglobal ResearchClimate Science: Observations versus ModelsПеревод: Арвид Хоглунд, специально для сайта "Война и Мир".Теория парниковых газов якобы ответственных за катастрофическое глобальное потепление не согласуется с фактами и является политической спекуляцией на реальной науке. Рассматривается фактическая картина современного климата по доступным данным.