В поисках частицы Бога, или Охота на бозон Хиггса - [4]

Шрифт
Интервал

. Цвет может быть красным, зеленым или синим, но эти определения не имеют никакого отношения к визуальным ощущениям. Кварки различных цветов притягиваются друг к другу. Следующая шестерка типов частиц материи называется лептонами, они образуют семью, включающую в себя электроны и призрачные, почти безмассовые частицы, называемые нейтрино, которые проходят почти беспрепятственно через все, что встречают на своем пути. В нашей Вселенной вся известная нам стабильная материя построена из кварков и электронов.

Другие частицы, описываемые Стандартной моделью, не являются строительными блоками материи, они выполняют другую работу. Четыре из них, отвечающие за перенос взаимодействий, существующих в природе, называются бозонами>14. Мы не проваливаемся сквозь пол благодаря электромагнитному взаимодействию, которое переносится фотонами — квантами, “частицами света”. Внутри атомных ядер кварки склеиваются “сильным взаимодействием”, носителями которого являются частицы, метко названные глюонами (от английского glue — клей). Другие частицы, называемые W- и Z- бозонами, являются носителями сил, определяющих слабые взаимодействия, они вступают в дело, когда распадаются некоторые радиоактивные элементы>15. Стандартную модель венчает еще одна частица, теоретически предсказанная Питером Хиггсом и названная в его честь бозоном Хиггса.

Казалось бы, в Стандартной модели есть все, что нужно, чтобы ответить на вопросы об источнике массы. Если все известные нам стабильные вещества состоят из кварков и электронов, то резонно предположить, что массы этих элементарных частиц — наименьшие возможные единицы массы. Тогда легко посчитать, какую массу имеет любой объект, просто просуммировав вклады всех миллиардов кварков и электронов, содержащихся в нем. Однако все не так просто.

Когда при суммировании получается неправильный ответ, это обычно означает, что мы что-то упустили. Вот, к примеру, протон. Он состоит из двух верхних кварков и одного нижнего. Если вы сложите их массы, то получите всего 1 процент массы протона. Но откуда же остальные 99 процентов его массы? То же самое происходит и с нейтроном, который содержит один верхний кварк и два нижних. Если ньютоновское определение массы, согласно которому масса — просто мера количества вещества, было бы правильным, то суммирование масс кварков дало бы правильный ответ. Но Ньютон знал только часть правды. Недостающая масса берется откуда-то еще.

Сложная это штука — масса. А насколько сложная, стало ясно в 1905 году, когда 26-летний Альберт Эйнштейн, работая днем в патентном ведомстве в Берне, в Швейцарии, а вечерами занимаясь физикой, написал и опубликовал статью под названием “Зависит ли инерция тела от содержащейся в нем энергии?”. Забегая вперед, скажем, что ответ положительный. Эйнштейн показал, что масса и энергия взаимозаменяемы, более того — масса может рассматриваться как мера содержания энергии в теле. Для научного сообщества эта идея прозвучала как гром среди ясного неба. Она — прямое следствие специальной теории относительности Эйнштейна16. Именно тогда Эйнштейн вывел уравнение m = Е/с>2, где масса предмета равна его энергии, деленной на квадрат скорости света. Переписав, получаем всем хорошо знакомое уравнение Е = mс>2, из которого легко увидеть, что из-за гигантских значений скорости света (около 300 000 километров в секунду) даже в объектах с маленькой массой содержится огромное количество энергии.

Открытие Эйнштейна в определенной степени объясняет, почему масса протона больше, чем сумма масс его частей. Масса трех кварков внутри протона равна всего лишь одному проценту массы протона, но они удерживаются вместе благодаря чрезвычайно сильным взаимодействиям. Основная часть массы протона приходится на энергию движения кварков внутри протона и энергию их связи. Это приводит нас к замечательному выводу: большая часть массы любого объекта от вашей любимой собаки до мобильного телефона — определяется огромной энергией, которая в нем заключена и благодаря которой объект остается единым целым.

Взаимосвязь между массой и энергией, открытую Эйнштейном, лучше всего демонстрируют гигантские ускорители, которые физики используют для изучения субатомных частиц. Столкните две частицы друг с другом на достаточно высоких скоростях, и осколки при столкновении, скорее всего, будут содержать более тяжелые частицы, чем исходные. Энергия, выделяющаяся при столкновении, практически мгновенно переходит в массу новых частиц.

Совместными усилиями Ньютон и Эйнштейн заложили основы нашего понимания природы масс, но в 1960-х годах стало ясно, что не хватает чего-то еще. Ученые никак не могли объяснить, откуда элементарные частицы получили свою массу. Именно эту тайну теория Хиггса, кажется, объяснила. И именно с ее помощью ученые надеются найти полное объяснение происхождения массы всей известной нам материи.


Питер Хиггс прибыл в Чапел-Хилл 6 сентября 1965 года. Оставив Джоди, которая была в то время беременна, у ее родителей в городе Урбана, штат Иллинойс, он принялся обустраивать их новый дом. Начав работу в университете, он приступил к своей первой большой работе о происхождении массы. 24 сентября, когда он трудился в факультетской библиотеке, его позвали к телефону — голос в трубке сообщил, что Джоди только что родила их первого сына, Кристофера.


Рекомендуем почитать
Популярная астрофизика. Философия космоса и пятое измерение

Александр Дементьев – журналист (работал в таких изданиях, как РБК, «Ведомости», Лента.ру), закончил МПГУ (бывш. МГПИ им. Ленина) по специальности общая и экспериментальная физика. Автор самого крупного научно-популярного канала «Популярная наука» на «Яндекс. Дзен». Перед вами – уникальная книга, которая даст возможность по-новому взглянуть на космос. Человечество стоит на пороге больших открытий за пределами нашей планеты. И они кардинально изменят жизнь людей! Из книги вы узнаете: • Что ждет Землю и Солнце в будущем.


Геометрия, динамика, вселенная

Книга посвящена проблемам современной физики и космологии. Рассматривается современная геометрия и ее связь с динамикой, новейшие модели эволюции Метагалактики, обсуждается проблема структуры физического пространства и его размерность. Все эти проблемы теоретической физики и космологии автор излагает для читателей, знакомых с общей физикой в объеме курсов, читаемых в вузах. Книга рассчитана на читателей, интересующихся современными достижениями космологии и физики.


Физика и жизнь. Законы природы: от кухни до космоса

Прочитав эту книгу, вы не только пополните свои знания в области физики, но и, возможно, измените отношение к этому предмету, если раньше не очень-то его жаловали. Порой вы даже будете раздосадованы тем, что раньше этого не замечали и не применяли. А удивляться есть чему, поскольку физика буквально пронизывает нашу жизнь; она поистине вездесуща и объясняет многие явления и процессы, от приготовления пиццы, тостов и попкорна, до образования жемчужин, вращения Земли и строительства кораблей для плавания во льдах.


Штурм неба

Воздушную оболочку Земли — атмосферу — образно называют воздушным океаном. Велик этот океан. Еще не так давно люди, живя на его дне, почти ничего не знали о строении атмосферы, о ее различных слоях, о температуре на разных высотах и т. д. Только в XX веке человек начал подробно изучать атмосферу Земли, раскрывать ее тайны. Много ярких страниц истории науки посвящено завоеванию воздушного океана. Много способов изыскали люди для того, чтобы изучить атмосферу нашей планеты. Об основных достижениях в этой области и рассказывается читателю в нашей небольшой книге.


Нейтрино - призрачная частица атома

В книге известного популяризатора науки А. Азимова в живой и популярной форме изложены современные представления о самой неуловимой частице микромира — нейтрино. Азимов прослеживает цепь событий, приведших физиков к открытию нейтрино, рассказывает о том, как эту частицу научились регистрировать, о ее роли в эволюции Вселенной, о последних достижениях нейтринной физики — двухнейтринном эксперименте. Автор стремится раскрыть перед читателем современную физическую картину мира, но в то же время не подавить его массой сведений, столь обширных в этой области науки.Книгой заинтересуются самые широкие круги читателей: школьники, преподаватели и те, кто следит за новейшими достижениями физики.


Молния и гром

В очередном выпуске серии «Научно-популярная библиотека» рассказывается о том, как возникают молния и гром, какой вред может причинить молния и как защититься от её разрушительного воздействия. В начале книги даются основные сведения об электричестве.