В поисках частицы Бога, или Охота на бозон Хиггса - [29]
В 1979 году Глэшоу прочитал лекцию>86, привлекшую общее внимание. Давая оценку своему вкладу в физику, он задался вопросом, почему Хиггс и другие физики, работавшие над проблемой происхождения масс, не поняли, что у них в руках был важный недостающий для объединения электромагнитного и слабого взаимодействий элемент. Сам Глэшоу много раз встречался и беседовал с Хиггсом и его коллегами. “Разве я не рассказывал им о моей модели, может, они просто забыли об этом?” — спросил он аудиторию. Не важно, по какой причине, но из-за упущенной тогда возможности физикам пришлось ждать семь лет, пока Вайнберг нашел применение механизму Хиггса.
К тому моменту, когда Хиггс услышал о прорыве, сделанном Вайнбергом, он прожил в Эдинбурге только один год. Он читал новости об открытии со смешанным чувством. “Я был рад, что кто-то нашел разумное применение моей теории, но испытывал и очевидную досаду. Я не смог решить эту задачу сам, потому что пытался применить свою теорию ко всему сразу, и это было ошибкой. Я зациклился на неправильном применении. Нам с Глэшоу просто не удалось как следует пообщаться”, — говорил мне Хиггс.
Что еще более удивительно, так это то, что Глэшоу не опередил Вайнберга в решении проблемы объединения. Шесть физиков, которые работали над проблемой природы массы, публиковали свои работы в самых престижных физических журналах того времени. Они были напечатаны всего через несколько лет после выхода работы Глэшоу. Но даже если Глэшоу не видел ни одной из этих статей, он должен был бы услышать о теории Хиггса в 1966 году, ведь он присутствовал на лекции Хиггса, когда тот рассказывал о своей теории в Гарварде, на следующий день после доклада в Институте перспективных исследований в Принстоне. Глэшоу даже поговорил с Хиггсом после лекции и сказал, что ему понравилась теория. “Он не понял тогда, что она имела отношение к его работе”, — сказал Хиггс. Позже Глэшоу признался, что “совершенно забыл” свою работу по электрослабым взаимодействиям.
Упущенные возможности не ограничились этими эпизодами. Как-то раз Джерри Гуральник с Джоном Чарапом физиком-теоретиком из колледжа Королевы Марии Лондонского университета спасались от ливня в битом “форде”. Это происходило после выхода в 1964 году в свет статей по происхождению масс. Они с удовольствием поболтали о теории и о возможности ее использования для объединения электромагнитных и слабых взаимодействий. По каким-то причинам ни тот ни другой никогда не принимали эту идею всерьез. Идея улетучилась вместе с тучей.
В другой раз Гуральник обедал с Джоном Уордом физиком, работавшим с Абдусом Саламом в Имперском колледже. Когда Гуральник начал рассказывать о своей работе, Уорд попросил его остановиться — опытный Уорд посоветовал Гуральнику не разбрасываться так своими идеями, потому что кто-нибудь может их украсть прежде, чем тот опубликует законченную работу. “Если бы он только послушал! У нас двоих было достаточно информации, чтобы решить проблему объединения там же”, — вспоминал позже Гуральник. Некоторое время спустя он написал: “Как же мы упустили свой шанс? Все из-за нерешительности, медлительности и невезения”>87.
По той или иной причине все физики, в 1964 году участвовавшие в работе над теорией возникновения массы, упустили шанс понять, какое отношение она имеет к реальному миру. Не говоря уже о личных и профессиональных разочарованиях, потерю из-за этого понесла и физика в целом. К сожалению, такое случается очень часто; ситуация, когда разные ученые знают, как сложить отдельные части большого пазла, но не могут собрать эти куски в единую картину в одном месте и в одно время, возникает нередко.
В настоящее время теории Вайнберга и Салама, опубликованные много лет назад, являются главным обоснованием Стандартной модели, описывающей поведение всех существующих в природе и известных нам сегодня частиц. Дополненная этими теориями Стандартная модель приобрела глубину. Она объясняет, как механизм Хиггса работает в природе, наделяя конкретные частицы, включая кварки И электроны, массой. До открытия Вайнберга теория Хиггса была не более чем изящной идеей, после — стала ключом в понимании природы материи.
Физики не восприняли теорию Вайнберга как истину в последней инстанции, и на это были достаточно веские основания. Ученые опасались, что его теория страдает тем же недостатком, что и квантовая электродинамика, — наличием расходимостей. Их беспокойство объяснялось тем, что в определенных обстоятельствах теория Вайнберга тоже может приводить к расходимости. В квантовой электродинамике проблему расходимостей в 1940 годах решил Ричард Фейнман, изобретя технику перенормировки. Вайнберг был уверен, что нечто похожее может быть сделано и в его теории. Вот только, к сожалению, он не знал, как это сделать.
Канал Зингель, опоясывая старинный голландский город Утрехт, словно заключает его в теплые объятия. В расположенных на его набережной трех соседних домах помещался когда-то институт теоретической физики местного университета. Для института было выбрано забавное место. Если бы в то время вошли в один из домов, вас, скорее всего встретила бы женщина, утверждающая, что она графиня, но она наверняка не была графиней. Летом цыплята из сада запрыгивали через окна в комнаты и прогуливались по письменным столам. На ланчи или выпить чашечку кофе физики спускались вниз в полуподвал, где в узком окне, выходившем на расположенную выше улицу, были видны ноги прохожих. Говорили, что в былые времена в этом здании располагался городской бордель
В книге, одним из авторов которой является известный американский физик Г. Гамов, в доступной и увлекательной форме рассказывается о достижениях на стыке физики и биологии. Данная книга рассчитана на учащихся старших классов и студентов начальных курсов университетов самых разных специальностей.
Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.
Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.
Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.
Исаак Ньютон возглавил научную революцию, которая в XVII веке охватила западный мир. Ее высшей точкой стала публикация в 1687 году «Математических начал натуральной философии». В этом труде Ньютон показал нам мир, управляемый тремя законами, которые отвечают за движение, и повсеместно действующей силой притяжения. Чтобы составить полное представление об этом уникальном ученом, к перечисленным фундаментальным открытиям необходимо добавить изобретение дифференциального и интегрального исчислений, а также формулировку основных законов оптики.
Ричард МурКлиматическая наука: наблюдения и модели.21.01.2010Источник: Richard K. Moore, Gglobal ResearchClimate Science: Observations versus ModelsПеревод: Арвид Хоглунд, специально для сайта "Война и Мир".Теория парниковых газов якобы ответственных за катастрофическое глобальное потепление не согласуется с фактами и является политической спекуляцией на реальной науке. Рассматривается фактическая картина современного климата по доступным данным.