В поисках частицы Бога, или Охота на бозон Хиггса - [12]

Шрифт
Интервал

Когда рождалась квантовая физика, ученые еще мало что знали о структуре атома. В модели, предложенной Эрнестом Резерфордом и Нильсом Бором, атомы состояли из твердых ядер, окруженных электронами, которые вращались вокруг ядер по концентрическим орбитам. В 1913 году Бор понял, что квантовая интерпретация движения электронов по орбитам позволяет объяснить длину волны (цвет) света, поглощаемого и излучаемого газообразным водородом. Это была очень специальная работа, но она окончательно убедила физиков, что идея квантов дает ключ к пониманию строения материи.

На протяжении более чем десяти лет работы в области квантовой физики носили фрагментарный и отрывочный характер, а ученым требовалась полная квантовая теория, объясняющая поведение любой частицы в любом атоме или молекуле. Успех принесли четыре года, с 1925-го по 1929-й, четыре года интенсивной работы, завершившиеся созданием “квантовой механики” — раздела квантовой теории, описывающей процессы, происходящие в мире атомов.


Вернер Гейзенберг, 24-летний физик из Геттингенского университета, был первым, кто добился тогда серьезных успехов. В конце мая 1925 года Гейзенберг жестоко страдал от сенной лихорадки. Нужно было срочно уехать — туда, где ничего не росло и не цвело. Отпросившись у своего руководителя Макса Борна в отпуск на две недели, Гейзенберг отправился на Гельголанд, небольшой остров в Северном море, который милостью Божьей был лишен всяческих цветов и трав. Когда он приехал — с жутко распухшим лицом и слезящимися глазами, — хозяйка гостиницы решила, что его избили в драке, и предложила подлечить молодого постояльца. Из окна его номера на втором этаже Гейзенбергу открылся чарующий вид на деревню, песчаные дюны и бескрайнее море.

К этому времени Гейзенберг разочаровался в результатах физиков, бьющихся над проблемами квантовой теории, и решил начать все заново. Единственное, что он использовал в своих расчетах, это свойства атомов, полученные в лабораторных экспериментах, например длины волн света, поглощаемого или испускаемого газами, или иначе атомные спектры>45. Расположив данные в виде таблицы, Гейзенберг решил описывать процессы поглощения и излучения света с помощью прыжков электронов с одних энергетических уровней в атоме на другие. Поглощая свет, электроны прыгают на более высокий уровень; падая вниз, испускают его снова.

Это была блестящая идея использовать атомные спектры для понимания структуры атома. Облучи атом светом, и он будет поглощать волны, длина которых соответствует энергии, необходимой, чтобы забросить электроны на более высокую орбиту. А когда электроны снова падают вниз, выделяется энергия и испускается свет той же длины волны, что и при поглощении. По длинам волн поглощенного и излучаемого света можно определить энергетическую структуру электронных орбит атома.

По мере того как работа Гейзенберга продвигалась вперед, стала проясняться механика атома>46. Волнуясь, он делал множество ошибок, нервничал. “Я был сильно взволнован, — писал он о своем пребывании на Гельголанде. — У меня было ощущение, что сквозь пелену множества беспорядочных атомных явлений я увидел удивительно красивую картину, и тогда я почувствовал легкое головокружение”. Наконец Гейзенберг завершил первый расчет, выполненный с помощью своей новой (матричной) техники. Случилось это в 3 часа ночи. Слишком возбужденный, чтобы спать, он вышел из дома и побрел к южной оконечности Гельголанда, вскарабкался на скалу, которая торчала над морем, и дождался восхода солнца.

Когда Гейзенберг вернулся в Геттинген, Макс Борн просмотрел его математические выкладки и понял, что теория верна. Вскоре они втроем (третьим стал молодой теоретик Паскуаль Иордан) доработали теорию, превратив ее в то, что потом стало известно как матричная механика. Называлась она так потому, что используемые термины записывались в виде таблиц или матриц.

Работа Гейзенберга была первым настоящим вариантом квантовой механики, а вскоре появился на свет и второй. В преддверии Рождества 1925 года австрийский физик Эрвин Шрёдингер, тогда работавший в Университете Цюриха, снял на несколько недель живописный заснеженный домик в Австрийских Альпах. Там он начал работать над собственной квантовой теорией. Шрёдингер, как всегда, пригласил с собой в путешествие свою старинную подругу, оставив жену Анни дома>47. Анни была не из тех, кто любит жаловаться, да и Шрёдингер для нее всегда был выше критики. Кроме того, у нее тоже был любовник — ближайший друг и коллега мужа по университету математик Герман Вейль.

Шрёдингер использовал совершенно иной подход, чем Гейзенберг. Его отправной точкой была идея, выдвинутая годом ранее французским физиком Луи де Бройлем, который утверждал, что электроны ведут себя как волны>48. Шрёдингер провел в трудах все рождественские каникулы — каждый шаг вперед давался ох как нелегко! 27 декабря он написал своему другу мюнхенскому физику Вилли Вину, лауреату Нобелевской премии 1911 года: “На данный момент я борюсь с новой атомной теорией. Если бы я знал лучше математику! Однако я настроен весьма оптимистически в отношении этой штуки и рассчитываю, что, если только... смогу справиться с ней, будет очень красиво”.


Рекомендуем почитать
Мистер Томпкинс внутри самого себя

В книге, одним из авторов которой является известный американский физик Г. Гамов, в доступной и увлекательной форме рассказывается о достижениях на стыке физики и биологии. Данная книга рассчитана на учащихся старших классов и студентов начальных курсов университетов самых разных специальностей.


Магнетизм высокого напряжения. Максвелл. Электромагнитный синтез

Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.


Охотники за нейтрино. Захватывающая погоня за призрачной элементарной частицей

Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.


Ньютон. Закон всемирного тяготения. Самая притягательная сила природы

Исаак Ньютон возглавил научную революцию, которая в XVII веке охватила западный мир. Ее высшей точкой стала публикация в 1687 году «Математических начал натуральной философии». В этом труде Ньютон показал нам мир, управляемый тремя законами, которые отвечают за движение, и повсеместно действующей силой притяжения. Чтобы составить полное представление об этом уникальном ученом, к перечисленным фундаментальным открытиям необходимо добавить изобретение дифференциального и интегрального исчислений, а также формулировку основных законов оптики.


Элегантная Вселенная. Суперструны, скрытые размерности и поиски окончательной теории

Книга Брайана Грина «Элегантная Вселенная» — увлекательнейшее путешествие по современной физике, которая как никогда ранее близка к пониманию того, как устроена Вселенная. Квантовый мир и теория относительности Эйнштейна, гипотеза Калуцы — Клейна и дополнительные измерения, теория суперструн и браны, Большой взрыв и мультивселенные — вот далеко не полный перечень обсуждаемых вопросов.Используя ясные аналогии, автор переводит сложные идеи современной физики и математики в образы, понятные всем и каждому.


Климатическая наука: наблюдения и модели

Ричард МурКлиматическая наука: наблюдения и модели.21.01.2010Источник: Richard K. Moore, Gglobal ResearchClimate Science: Observations versus ModelsПеревод: Арвид Хоглунд, специально для сайта "Война и Мир".Теория парниковых газов якобы ответственных за катастрофическое глобальное потепление не согласуется с фактами и является политической спекуляцией на реальной науке. Рассматривается фактическая картина современного климата по доступным данным.