В мире незримого - [29]

Шрифт
Интервал

Рассказывая об этих замечательных экспериментах, мы не придерживаемся хронологического порядка. Нам хотелось раскрыть перед читателями лишь развитие идей ученых и воплощение этих идей в эксперименте.

С поисками вакцин против сыпного тифа связаны удивительные исследования. Для эксперимента ученые выбирали не только животных, но и насекомых, например вшей, которых надо было искусственно заражать риккетсиями и придумывать для этого совершенно фантастическую методику и технику.

Итак, ученые уже хорошо знали, что риккетсии могут находиться не только в организме больных людей и животных, но также в кишечнике зараженных вшей. Так не использовать ли их для приготовления вакцин? Не воспользоваться ли этой естественной «биологической пробиркой», в которой можно накапливать множество риккетсий? Мысль совершенно фантастическая. Многих отталкивала в этом неэстетичность экспериментов со вшами, но энтузиасты преодолели и трудности, и насмешливые улыбки коллег. А трудности были совершенно исключительными. Как, например, заражать вшей, чтобы получить массы риккетсий? Польский микробиолог Р. Вейгль решил эту проблему весьма своеобразно. Он создал специальный станочек с капиллярной стеклянной трубочкой, с помощью которой взвесь риккетсий вводится в виде микроклизмы в анальное отверстие. Эта тонкая работа проводилась с помощью пинцетов и под контролем увеличительных луп. Через несколько дней после такой микроклизмы в кишечнике вшей происходило такое накопление риккетсий, что несколько десятков кишечников вшей хватало на три прививки человеку. Как ни тонка и своеобразна была методика заражения вшей, но дальше требовалась подлинно филигранная работа по выделению кишечников, и это тоже было сделано. Кишечники собирались в ступку и растирались, а затем обрабатывались фенолом для умерщвления риккетсий. Хотя вакцина Вейгля обладала несомненной эффективностью и ею было привито около миллиона человек, сложность техники приготовления ограничила более широкое ее применение на практике.

Теперь вакцина Вейгля имеет лишь научно-историческое значение. Однако дело заключалось не только в сложности технологии приготовления вакцины. Для массового приготовления вакцины Вейгля нужно было очень большое количество вшей. Надо было обеспечить их размножение и кормить человеческой кровью. И вот кормление было организовано на людях — донорах. Для этого десятки и даже сотни вшей помещали в специальные камеры-кормилки, похожие на футляры часов на ремешке (с одной стороны камеры имели сетки). Камеры прикрепляли к коже рук или ног людей, причем сторона с сеткой была обращена к коже. Через отверстия в сетке вши набрасывались на кожу донора и сосали кровь. На эту мучительную процедуру массового кормления вшей ради заработка шли безработные, которых в капиталистической стране, где работал Вейгль в те годы, было всегда много.

Совершенно иную методику кормления вшей предложил советский микробиолог профессор А. В. Пшеничное. Кормление и вместе с тем заражение производили либо кровью сыпнотифозных больных, либо кровью здоровых людей, к которой добавляли риккетсии. Используя естественный инстинкт вшей кусать кожу, на камеры-кормилки натягивали тонкую биологическую перепонку (мембрану) из кожи трупа. Эта биологическая мембрана получила название «эпидермомембрана», так как для создания перепонки брался эпидермис, т. е. тонкий наружный поверхностный слой кожи. Через эту оболочку, которую вши прокалывали, и происходило сосание крови. Из нимф (стадия развития вшей) зараженных вшей готовили вакцину.

Методика советских ученых не только значительно упрощала технологию Вейгля. Самое главное заключалось в том, что для кормления вшей были не нужны люди-доноры. Так в разных социальных условиях по-разному решалась одна и та же научная проблема.

Со времен классических работ Пастера по аттенуации (ослаблению) микробов в иммунологии прочно установилось мнение, что живые вакцины лучше убитых. Так не пойти ли по этому пути и в создании живых сыпнотифозных вакцин. Ученые избрали этот трудный путь и были вознаграждены большими научными успехами.

В настоящее время живая вакцина получена и проходит успешное изучение на практике. Готовится живая вакцина из разновидности риккетсий Провачека, получившей название штамма Е, потерявшего свою вирулентность. Как же был получен такой безвредный штамм (разновидность) риккетсий? Испанские ученые Г. Клаверо и П. Галлардо выделили из крови сыпнотифозного больного риккетсии. Для культивирования и изучения их пассировали, т. е. перевивали через куриные эмбрионы, в которых размножались риккетсии. Ими снова заражались свежие куриные зародыши. Так длительное время можно сохранять риккетсии. Ученые обратили внимание на то, что в результате пассажа риккетсии потеряли свою вирулентность (способность заражать) и не вызывали экспериментальный сыпной тиф у чувствительных животных. Но самое важное заключалось в том, что вирулентные свойства риккетсий снизились, а способность вызывать иммунитет сохранилась. Это именно то замечательное свойство, которым должны обладать живые вакцины. Началось изучение живой вакцины в эксперименте на животных и проверка эффективности на людях в разных странах. Большая и разносторонняя работа проведена в СССР в лаборатории лауреата Ленинской премии академика АМН СССР П. Ф. Здродовского с сотрудниками Е. М. Голиневич и В. А. Яблонской. В результате был сделан вывод: живая вакцина может быть рекомендована для применения по специальным показаниям.


Рекомендуем почитать
Алексей Васильевич Шубников (1887—1970)

Книга посвящена жизни и творчеству выдающегося советского кристаллографа, основоположника и руководителя новейших направлений в отечественной науке о кристаллах, основателя и первого директора единственного в мире Института кристаллографии при Академии наук СССР академика Алексея Васильевича Шубникова (1887—1970). Классические труды ученого по симметрии, кристаллофизике, кристаллогенезису приобрели всемирную известность и открыли новые горизонты в науке. А. В. Шубников является основателем технической кристаллографии.


Квантовая модель атома. Нильс Бор. Квантовый загранпаспорт

Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.


Магнетизм высокого напряжения. Максвелл. Электромагнитный синтез

Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.


Знание-сила, 2006 № 12 (954)

Ежемесячный научно-популярный и научно-художественный журнал.


Занимательное дождеведение: дождь в истории, науке и искусстве

«Занимательное дождеведение» – первая книга об истории дождя.Вы узнаете, как большая буря и намерение вступить в брак привели к величайшей охоте на ведьм в мировой истории, в чем тайна рыбных и разноцветных дождей, как люди пытались подчинить себе дождь танцами и перемещением облаков, как дождь вдохновил Вуди Аллена, Рэя Брэдбери и Курта Кобейна, а Даниеля Дефо сделал первым в истории журналистом-синоптиком.Сплетая воедино научные и исторические факты, журналист-эколог Синтия Барнетт раскрывает удивительную связь между дождем, искусством, человеческой историей и нашим будущим.


Охотники за нейтрино. Захватывающая погоня за призрачной элементарной частицей

Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.