Уродливая Вселенная - [20]
В отличие от световых микроскопов, в которых установлены зеркала и линзы, в ускорителях частиц используются электрические и магнитные поля, чтобы разгонять и фокусировать пучки электрически заряженных частиц. Однако по мере того, как мы увеличиваем скорость частиц, нужных для исследования некоего объекта, становится все труднее получать из измерения информацию. Это происходит потому, что частицы, предназначавшиеся для измерения исследуемого образца, начинают заметно его менять. Видимый свет, падающий на колечко лука, слабо на него влияет, разве что самую малость нагреет. Но пучок стремительных электронов, бьющих по тонкой мишени, при достаточно высокой энергии эту мишень разрушает. Тогда информацию о том, что произошло на очень коротких расстояниях, приходится искать в осколках. И это в целом и есть физика высоких энергий: попытки извлечь информацию из осколков от столкновений[37].
Расстояние, которое удается разрешить с помощью ускорителей, обратно пропорционально суммарной энергии сталкивающихся частиц. Хорошая подсказка для запоминания: энергия в 1 ГэВ (это 10>9 эВ, или 10>–3 ТэВ, примерно масса протона) соответствует разрешенному расстоянию приблизительно в 1 фемтометр (10>–15 м, примерно размер протона). Увеличение энергии на порядок означает уменьшение расстояния на порядок, и наоборот. Большой адронный коллайдер может достигать энергии столкновения максимально около 10 ТэВ. Это соответствует примерно 10>–19 метра, самому короткому расстоянию, на котором мы когда-либо исследовали законы природы – пока.
Задача физиков-теоретиков – найти уравнения, которые точно описывают результаты столкновения частиц. Когда расчеты совпадают с экспериментальными данными, мы обретаем уверенность в теории. Когда физики-теоретики лучше понимают столкновения частиц, экспериментаторы могут проектировать более эффективные детекторы. А когда экспериментаторы лучше понимают технологию ускорителей, теоретики получают более надежные данные.
Эта стратегия была потрясающе успешна и дала нам Стандартную модель физики элементарных частиц, наши лучшие на настоящий момент знания об элементарных строительных блоках материи.
Стандартная модель
Стандартная модель основана на принципе под названием «калибровочная симметрия». Согласно этому принципу, каждая частица имеет направление в некоем внутреннем пространстве, как стрелка в компасе, только стрелка эта не указывает на что-либо видимое нам.
«Что за внутреннее пространство?» – спросите вы. Хороший вопрос. Лучший ответ, который я могу предложить: удобное. Мы изобрели его, чтобы количественно характеризовать наблюдаемое поведение частиц, это математический инструмент, помогающий нам делать предсказания.
«Ясно, но оно реально?» – хочется вам узнать. О-оу. Смотря кому вы зададите этот вопрос. Некоторые мои коллеги действительно верят, что математика наших теорий, как эти внутренние пространства, реальна. Лично я предпочитаю просто говорить, что она описывает реальность, оставляя открытым вопрос о том, реальна или нет сама математика. Связь математики с реальностью – это загадка, не дававшая покоя философам еще задолго до того, как ею занялись ученые, и с тех пор мы нисколько не продвинулись. Но к счастью, мы можем использовать математику, не разрешая этой загадки.
Итак, всякая частица имеет направление в своем внутреннем пространстве. То, что мы называем калибровочной симметрией, требует, чтобы законы природы не зависели от ярлыков, используемых нами для обозначения этого пространства, – например, мы могли бы изменить компас таким образом, чтобы стрелка указывала на северо-запад вместо севера. После такого изменения «северная» частица могла бы превратиться в комбинацию других частиц, став, скажем, «северо-западной». И это на самом деле происходит с электроном: преобразование в его внутреннем пространстве может заставить электрон превратиться в комбинацию электрона и нейтрино. Но если такое преобразование является симметрией, то трансформация частиц не должна менять физику. Стало быть, требование симметрии ограничивает возможные законы, которые мы можем записать. Логика тут как при раскрашивании мандалы. Если вы хотите, чтобы при раскрашивании соблюдалась симметрия узора, опций у вас будет меньше, чем если бы вы игнорировали симметрию.
Что касается законов природы, требование симметрии выполнить непросто. Серьезное затруднение состоит в том, что повороты внутреннего пространства могут различаться в разные моменты времени и в разных местах, и это тоже не должно отражаться на законах, которым подчиняются частицы. Если мы формулируем это требование симметрии в математической форме, то видим, что оно жестко ограничивает поведение частиц. Взаимодействие между частицами, подчиняющимися требованию симметрии, должно происходить при посредничестве другой частицы, чьи свойства определяются типом вовлеченной симметрии. Эта дополнительная частица называется калибровочным бозоном симметрии.
Предыдущий абзац в сжатой форме выражает математически сложные построения, и с подобной лаконичностью изложения вы получите только очень грубое представление о том, как это работает. Но главная идея такова: если мы хотим создать теорию, в которой соблюдается определенная симметрия, то это неизбежно порождает определенный тип взаимодействия между частицами, подчиняющимися этой симметрии. Более того, требование симметрии автоматически добавляет в теорию и необходимых переносчиков взаимодействия – калибровочные бозоны. Именно этот тип калибровочной симметрии лежит в основе Стандартной модели.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
«Поймай здоровье в сети» – книга самого молодого академика РАН Андрея Лисицы и журналиста Елены Савчук – рассказывает о набирающем популярность термине «здоровьесбережение», способе мышления, предполагающем, что все мы должны взять на себя ответственность за свое здоровье, а не перекладывать ее на государство, медицину и докторов. Человек – сам менеджер своего здоровья, заботящийся о нем и управляющий им в том числе с помощью сетевых здоровьеcберегающих технологий, доступных в смартфоне каждому из нас.
Известный космический журналист Нэнси Аткинсон собрала в своей книге захватывающие рассказы более чем 35 инженеров и ученых NASA (Национального управления по аэронавтике и исследованию космического пространства). Вы проникнете за кулисы космических проектов, и ваши взгляды об устройстве Солнечной системы в корне изменятся. Трудности и триумфы космических исследований, дух открытий, цветные фотографии, демонстрирующие научные победы и поражения, потрясающие виды Вселенной – все это в книге «Непридуманные космические истории».
Новая книга Стефано Манкузо также посвящена уникальным и неожиданным возможностям растений. Жизнь в экстремальных условиях, защитная маскировка от хищников, передвижение без потребления энергии, наконец, манипуляция животными и людьми – вот лишь то немногое, о чем рассказывает талантливый ученый. Книга наполнена потрясающими цветными иллюстрациями самих героев!
Оглянитесь! Ткани окружают нас с самого рождения и сопровождают на протяжении всей жизни. Возможно, сейчас вы сидите на мягком сиденье в вагоне поезда или метро. На вас надет шерстяной свитер или ситцевая рубашка. А может, вы лежите в кровати на уютных хлопковых простынях, укутавшись в теплый плед? Все это сделано из полотна – тканого, валяного или вязаного. Однако при всей важности тканей мало кто задумывается, какую значимость они представляют для нас и как крошечные волокна повлияли на историю и человечество в целом. Ткани – натуральные и искусственные – меняли, определяли, двигали вперед мир, в котором мы живем, и придавали ему форму.