Уродливая Вселенная - [15]

Шрифт
Интервал

В конференции также принимает участие Гордон (Горди) Кейн, американский специалист по физике элементарных частиц. Горди – автор нескольких научно-популярных книг о физике частиц и суперсимметрии, еще известный своими попытками объединить теорию струн со Стандартной моделью. Он утверждает, будто может вывести из теории струн заключение, что суперсимметричные частицы должны появиться в Большом адронном коллайдере.

Во время выступления Кейна среди физиков вспыхивает спор. Некоторые из них дискутируют с докладчиком, пока какой-то философ громко не жалуется, что хочет услышать конец выступления. «И это составляющая того, что мы зовем научным методом…» – ворчит Дэвид Гросс, давний сторонник теории струн (который «от всего сердца рекомендует»>49 книгу Рихарда Давида), но затем садится обратно. Действительно ли предсказания Кейна следуют из теории струн, или он сделал дополнительные специальные допущения, чтобы воспроизвести то, что мы уже знаем о Стандартной модели? Сомнения остаются.

Горди, возможно, и переоценивает строгость своих выкладок, но выполняет трудную работу: он один из немногих, кто пытается отыскать тропинку от красивой идеи теории струн назад к запутанной реальности физики элементарных частиц. Тропинка Горди ведет через суперсимметрию, необходимый элемент теории струн. Хотя открытие суперпартнеров и не доказало бы истинность теории струн, оно стало бы первой вехой на пути объединения теории струн со Стандартной моделью.

В своей книге 2001 года Горди описал суперсимметрию как «удивительную, красивую и необыкновенную» и в то время казался уверенным, что Большой адронный коллайдер обнаружит частицы-суперпартнеры. Его уверенность основывалась на аргументе о естественности. Если предположить, что теория суперсимметрии содержит только «приличные» числа – не слишком большие, но и не слишком маленькие, – можно оценить массы суперпартнеров. «По счастью, ожидаемые массы достаточно малы, они намекают, что суперпартнеры скоро будут обнаружены», – писал Горди. И объяснил, что «массы суперпартнеров не могут значительно превышать массу Z-бозона, если весь этот подход правильный». Стало быть, если суперпартнеры существуют, Большой адронный коллайдер должен был давным-давно их засечь.

* * *

Оценка Горди основывается на одной из главных привлекательных особенностей суперсимметрии: она избавляет от необходимости выполнять тонкую настройку для массы бозона Хиггса, одной из двадцати пяти частиц Стандартной модели. Этот довод типичен, мы с такими еще не раз столкнемся, так что разберем его детально.

Бозон Хиггса – единственная известная частица своего типа, и он страдает от специфической математической проблемы, от которой другие элементарные частицы защищены: квантовые флуктуации вносят огромный вклад в его массу. Вклад квантовых флуктуаций обычно мал, но в случае бозона Хиггса он дает массу гораздо большую, чем наблюдаемая, – в 10>14 раз больше. Не слегка неправильную, а недопустимо, катастрофически неверную[32].

То, что математика дает ошибочный результат для массы хиггсовского бозона, легко исправить. Можно внести поправку в теорию посредством вычитания нужного члена – так, чтобы оставшаяся разность давала наблюдаемую массу. Подобная поправка возможна, поскольку ни один из членов по отдельности не измерить, измерима лишь разница между ними. Однако, производя такое действие, нужно аккуратно подобрать вычитаемый член, чтобы почти, но не полностью аннулировать вклад квантовых флуктуаций.

Для такого деликатного устранения требуется число, идентичное тому, что обуславливают квантовые флуктуации, в четырнадцати разрядах, а затем отличающееся в пятнадцатом. Но то, что пара таких близких чисел могла возникнуть случайно, кажется крайне маловероятным. Представьте, что вы дважды запускаете руку в огромную коробку, где лежат лотерейные билеты со всеми возможными пятнадцатизначными номерами. Если вы вытянете два билета с абсолютно одинаковыми, за исключением последней цифры, номерами, то подумаете, что этому должно быть объяснение – либо билеты плохо перемешаны, либо кто-то вас разыграл.

Физики чувствуют то же по поводу подозрительно маленькой разности двух больших чисел, необходимой, чтобы придать правильную массу бозону Хиггса, – это словно бы требует объяснения. Но поскольку, когда речь идет о законах природы, мы не вытягиваем номера из коробки, мы лишены возможности сказать, насколько это вероятно или невероятно. Следовательно, то, что масса хиггсовского бозона требует объяснения, на самом деле ощущение, а не факт.

Число, будто бы нуждающееся в объяснении, физики называют «тонко настроенным» (fine-tuned), а теорию без тонко настроенных чисел – «естественной»[33]. Часто естественную теорию еще описывают как ту, которая использует только числа, близкие к единице. Эти два определения естественности одинаковы, ведь если два числа близки друг к другу, то разность между ними много меньше единицы.

Итак, числа очень большие, очень маленькие и очень близкие неестественны. В рамках Стандартной модели масса бозона Хиггса неестественна, что делает эту модель некрасивой.


Рекомендуем почитать
Мы - поколение великого потопа

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Две загадки лунной дилогии

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Тайна субъективных переживаний поддается разгадке

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


И по Арсеньеву прошлась 'Лубянская лапа ЧЕКА'

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Об опыте Стефана Маринова

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Сборник статей о НЛО

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Поймай здоровье в сети

«Поймай здоровье в сети» – книга самого молодого академика РАН Андрея Лисицы и журналиста Елены Савчук – рассказывает о набирающем популярность термине «здоровьесбережение», способе мышления, предполагающем, что все мы должны взять на себя ответственность за свое здоровье, а не перекладывать ее на государство, медицину и докторов. Человек – сам менеджер своего здоровья, заботящийся о нем и управляющий им в том числе с помощью сетевых здоровьеcберегающих технологий, доступных в смартфоне каждому из нас.


Непридуманные космические истории

Известный космический журналист Нэнси Аткинсон собрала в своей книге захватывающие рассказы более чем 35 инженеров и ученых NASA (Национального управления по аэронавтике и исследованию космического пространства). Вы проникнете за кулисы космических проектов, и ваши взгляды об устройстве Солнечной системы в корне изменятся. Трудности и триумфы космических исследований, дух открытий, цветные фотографии, демонстрирующие научные победы и поражения, потрясающие виды Вселенной – все это в книге «Непридуманные космические истории».


Революция растений

Новая книга Стефано Манкузо также посвящена уникальным и неожиданным возможностям растений. Жизнь в экстремальных условиях, защитная маскировка от хищников, передвижение без потребления энергии, наконец, манипуляция животными и людьми – вот лишь то немногое, о чем рассказывает талантливый ученый. Книга наполнена потрясающими цветными иллюстрациями самих героев!


Золотая нить. Как ткань изменила историю

Оглянитесь! Ткани окружают нас с самого рождения и сопровождают на протяжении всей жизни. Возможно, сейчас вы сидите на мягком сиденье в вагоне поезда или метро. На вас надет шерстяной свитер или ситцевая рубашка. А может, вы лежите в кровати на уютных хлопковых простынях, укутавшись в теплый плед? Все это сделано из полотна – тканого, валяного или вязаного. Однако при всей важности тканей мало кто задумывается, какую значимость они представляют для нас и как крошечные волокна повлияли на историю и человечество в целом. Ткани – натуральные и искусственные – меняли, определяли, двигали вперед мир, в котором мы живем, и придавали ему форму.