Удивительный мир звука - [9]

Шрифт
Интервал

На космических снарядах, в условиях невесомости, будут, как известно, получать новые диковинные сплавы и материалы. Возможно, на помощь придет и ультразвук, смешивающий, раздробляющий малые частицы жидких материалов. Одним словом, земная акустика будет все больше заявлять о себе космоплавателям. Как не заявить, если уже сейчас в некоторых странах разрабатываются проекты лунных городков на сотни и тысячи человек.

Прибор, установленный на поверхности Луны, передает по радио на Землю сведения о затухании звука в лунных породах.

А что делается снаружи космического корабля, непосредственно вблизи его борта? Уже сейчас здесь действует акустика, работает структурный звук. Выставленная за борт металлическая мембрана воспринимает удары несущихся навстречу микрометеоритов, кусочков космического вещества. Каждый удар частицы о мембрану возбуждает ее колебания, данные о которых с помощью индукционного или иного датчика поступают внутрь корабля на счетную электронную схему либо передаются радиоустройством на Землю. Этим способом канадские ученые оценили значения микрометеоритной активности в функции от высоты ракеты над Землей.

Луна, планеты солнечной системы и их естественные спутники. Здесь -раздолье для акустиков-геофизиков, а на тех планетах, где есть атмосфера, -и для атмосферных акустиков. Установленное на Луне американскими астронавтами устройство позволило сделать интереснейшее открытие: время реверберации (послезвучания) колебаний в породах лунного грунта приближается к минуте. Луна звучит, как церковный колокол! Пока еще не дано объяснения этому явлению.

Была измерена и скорость распространения звука в лунных породах. Когда-то великий насмешник, мастер парадоксов и иронических сентенций Эразм Роттердамский писал, что "...луна состоит из заплесневелого сыра..." Два европейских геофизика не пожалели времени на то, чтобы измерить скорость продольных волн в ... сырах из Италии, Швейцарии, США, Норвегии. Возможно, как о курьезе, они сообщили, что скорость звуковых волн в этих сырах (от 1,6 до 2,1 километра в секунду) соответствует нижнему пределу скорости распространения звука в лунных породах.

Несомненно, уже в ближайшее время будут досконально изучены акустические свойства пород на поверхности Венеры и Марса. А в атмосфере Венеры с ее чудовищной плотностью возможно существование звуков огромной интенсивности.

Плазма -- одно из состояний упругого вещества. Уже производились опыты по возбуждению механических звуковых колебаний в плазменных шнурах установок, в которых имеются условия для возникновения термоядерной реакции. Поэтому когда при исследовании пятен на Солнце были обнаружены колебания низкой частоты с длиной волны порядка 2500 километров и на основании некоторых данных было высказано предположение, что эти волны имеют звуковое, а не магнитное происхождение, то эта версия не встретила у ученых особых возражений.

Как видим, в акустических проблемах в космосе уже сегодня нет недостатка. Первую страницу космической акустики можно считать открытой. Но пытливый ум исследователей углубляется в совсем уже не изведанные просторы мироздания. Один японский журнал в 1973--1974 годах опубликовал цикл статей о генерации звука ни много ни мало как в первичной турбулентности... расширяющейся Вселенной; едва ли кто-нибудь задумывался раньше о возможности сочетания акустики и космогонии.

ЗВУКОВАЯ ЭНЕРГИЯ УШЛА,

А ГРОМКОСТЬ ЗВУКА ВОЗРОСЛА??

По-видимому, отзвук (эхо) существует всегда, но не всегда отчетливо выражен

Аристотель. О душе

Говоря об удивительном в мире звука, нельзя обойти вниманием своеобразные, кажущиеся на первый взгляд парадоксальными явления на границах сред с сильно разнящимися акустическими сопротивлениями.

Хотя мы не хотели бы докучать читателю формулами, но без нескольких простейших определений основных акустических величин все же не обойтись. Когда волна продольная, то есть направление колебаний частиц среды совпадает с направлением распространения волны, то переменное (звуковое) давление в ней р связано с колебательной скоростью частиц v выражением

р = Zv,

где коэффициент пропорциональности Z представляет собой акустическое сопротивление среды, равное произведению плотности среды на скорость распространения звука в ней (не путать со значительно меньшей по величине v!). Электроакустики склонны именовать приведенное выражение "акустическим законом Ома", хотя оно появилось раньше работ Ома. "Удобнее запоминать", -утверждают они. Может быть, это и справедливо для современного общества, в которое электротехника внедрилась весьма широко.

Вторая формула относится к определению интенсивности или, что то же, силы звука, представляющей собой поток звуковой энергии через единицу площади фронта волны в единицу времени:

J=0,5p2/Z=0,5v2Z

Вооруженные этими двумя начальными буквами акустической азбуки, приступим к интересующему нас вопросу о явлениях на границах разнородных сред.

Пусть звук произвольной частоты падает по нормали из среды с малым акустическим сопротивлением (например, воздушной) на границу среды с большим акустическим сопротивлением (вода, кирпичная кладка и т. п.). Одним из интересных, хотя, быть может, еще и не поражающих нас феноменов, является то, что в эту вторую среду передается переменное (звуковое) давление, почти вдвое превышающее звуковое давление в первой среде.


Рекомендуем почитать
Алексей Васильевич Шубников (1887—1970)

Книга посвящена жизни и творчеству выдающегося советского кристаллографа, основоположника и руководителя новейших направлений в отечественной науке о кристаллах, основателя и первого директора единственного в мире Института кристаллографии при Академии наук СССР академика Алексея Васильевича Шубникова (1887—1970). Классические труды ученого по симметрии, кристаллофизике, кристаллогенезису приобрели всемирную известность и открыли новые горизонты в науке. А. В. Шубников является основателем технической кристаллографии.


Квантовая модель атома. Нильс Бор. Квантовый загранпаспорт

Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.


Магнетизм высокого напряжения. Максвелл. Электромагнитный синтез

Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.


Знание-сила, 2006 № 12 (954)

Ежемесячный научно-популярный и научно-художественный журнал.


Занимательное дождеведение: дождь в истории, науке и искусстве

«Занимательное дождеведение» – первая книга об истории дождя.Вы узнаете, как большая буря и намерение вступить в брак привели к величайшей охоте на ведьм в мировой истории, в чем тайна рыбных и разноцветных дождей, как люди пытались подчинить себе дождь танцами и перемещением облаков, как дождь вдохновил Вуди Аллена, Рэя Брэдбери и Курта Кобейна, а Даниеля Дефо сделал первым в истории журналистом-синоптиком.Сплетая воедино научные и исторические факты, журналист-эколог Синтия Барнетт раскрывает удивительную связь между дождем, искусством, человеческой историей и нашим будущим.


Охотники за нейтрино. Захватывающая погоня за призрачной элементарной частицей

Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.