Удивительный мир звука - [14]
А как ведут себя частоты "обычных" резонансов в зависимости от основных параметров колебательных резонирующих систем? Практически каждому человеку хоть раз довелось наблюдать, что чем большая масса подвешивается к крючку безмена, тем ниже частота колебаний этой массы на пружине безмена. Частота акустического резонатора, собственные частоты пластинок или стержней также тем ниже, чем больше массы и чем меньше жесткости соответствующих элементов. Частота же резонанса совпадения, наоборот, возрастает с увеличением массы и уменьшением жесткости пластин, на которые падает звук.
Наконец, обычные резонансы проявляются, как правило, в достаточно узкой полосе частот. Частота резонанса совпадения зависит от угла падения звука. А так как в диффузном, размешанном звуковом поле все углы падения звука на пластину равновероятны, то при этом виде поля, характерном для большинства помещений, полоса частот резонанса совпадения каждой перегородки или стенки (а следовательно, и полоса частот, в которой перегородка или стенка пропускает звук) достаточно широка.
"Дефективный" резонанс совпадения обусловил довольно противоречивую картину зависимости звукоизоляции от толщины стенки. С одной стороны, увеличение толщины стенки согласно "закону массы" увеличивает звукоизоляцию. Но с другой стороны, поскольку при этом уменьшается отношение массы стенки к ее изгибной жесткости, ухудшающий звукоизоляцию резонанс совпадения проявляется на более низких частотах и захватывает более широкую полосу частот.
Где выход? Тот же Л. Кремер предложил делать тонкие пропилы в стенках на определенную глубину. Не изменяя практически массу стенки, эти пропилы резко уменьшают ее жесткость, и частота резонанса совпадения перемещается в более высокую область частот. У свинцовых же звукоизолирующих перегородок, например, благодаря их большой массе и весьма малой жесткости, резонанс совпадения находится в неслышимой ультразвуковой области частот.
Кирпичные стены. Это -- масса, а значит, и звукоизоляция. И резонанс совпадения по некоторым причинам здесь проявляется слабее. Но кирпичные стены не поставишь на теплоход или самолет. Нужно "обмануть" закон массы; нужны облегченные, но хорошо изолирующие звук устройства. В какой-то мере это удается достичь применением двухстенных конструкций. Воздушный промежуток между стенками с точки зрения увеличения эффекта звукоизоляции -примерно то же, что воздушный слой между стеклами оконной рамы для увеличения теплоизоляции.
Ширина воздушного слоя между стенками, влияет ли она на величину звукоизоляции? Одно время, ссылаясь на возникающие в воздушном слое резонансы объема воздуха, утверждали, что существует оптимальная ширина воздушного зазора в двухстенной конструкции и что больше определенной величины этот зазор делать не следует, иначе резонансы будут возникать с более низких частот и захватят более широкую их область. Опыт показал, что при наличии в зазоре звукопоглощающих материалов бояться этих резонансов нечего.
Таким образом, чем больше зазор между стенками, тем выше звукоизоляция двухстенной конструкции. Л. Кремер в возглавляемом им Институте технической акустики демонстрировал советским специалистам двухстенную конструкцию из стеклоблоков с зазором между стенками, достигающим почти метра. Конструкция предназначалась для световых проемов в баптистской церкви, находящейся на одном из самых шумных перекрестков Западного Берлина. Как выяснилось, прихожане этой церкви не могли с должной сосредоточенностью совершать обряды даже при малейшем шуме. Последовало обращение, во имя бога, к строительным акустикам, подкрепленное, впрочем, земными, финансовыми стимулами. Разработанная световая конструкция обеспечивала звукоизоляцию до 80 децибелов, что не уступает звукоизоляции кирпичной стены, имеющей значительно большую массу.
Влияние "закона массы" на звукоизоляцию по-разному проявляется в конструкциях различной площади. Значительную роль играют характер заделки звукоизолирующей стенки по контуру и вид элементов, связывающих между собой стенки в двухстенной конструкции. Эти и другие вопросы применительно к изоляции воздушного и ударного шума (последний имеет место в конструкциях полов) исследовались ведущими советскими строительными акустиками С. П. Алексеевым, И. И. Боголеповым, В. И. Заборовым, С. Д. Ковригиным, М. С. Седовым и другими, во многом содействовавшими внедрению эффективных звукоизолирующих конструкций в строительстве, на производстве и на транспорте.
ВОЗМОЖНО ЛИ ПОДСЛУШИВАНИЕ
ЧЕРЕЗ ЗАМОЧНУЮ СКВАЖИНУ?
Если под этим понимать допустимость подслушивания, то каждый считающий себя воспитанным человек должен был бы ответить отрицательно. Но нас интересует не этическая, а физическая сторона вопроса, и тут ответ будет положительным.
Ну, и что же? Тривиальная вещь, скажет иной читатель. Но он, пожалуй, изменит свое мнение, если узнает следующее: через скважину можно подслушивать из соседней комнаты даже такую тихую речь, что человек, находящийся в одной комнате с говорящим (но, естественно, в известном отдалении от него, скажем, у стены вблизи двери), уже не в состоянии эту речь отчетливо воспринять.
Книга посвящена жизни и творчеству выдающегося советского кристаллографа, основоположника и руководителя новейших направлений в отечественной науке о кристаллах, основателя и первого директора единственного в мире Института кристаллографии при Академии наук СССР академика Алексея Васильевича Шубникова (1887—1970). Классические труды ученого по симметрии, кристаллофизике, кристаллогенезису приобрели всемирную известность и открыли новые горизонты в науке. А. В. Шубников является основателем технической кристаллографии.
Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.
Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.
«Занимательное дождеведение» – первая книга об истории дождя.Вы узнаете, как большая буря и намерение вступить в брак привели к величайшей охоте на ведьм в мировой истории, в чем тайна рыбных и разноцветных дождей, как люди пытались подчинить себе дождь танцами и перемещением облаков, как дождь вдохновил Вуди Аллена, Рэя Брэдбери и Курта Кобейна, а Даниеля Дефо сделал первым в истории журналистом-синоптиком.Сплетая воедино научные и исторические факты, журналист-эколог Синтия Барнетт раскрывает удивительную связь между дождем, искусством, человеческой историей и нашим будущим.
Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.