Учебное пособие по курсу «Нейроинформатика» - [8]
Самым универсальным способом задания начального положения ядер является задание начального разбиения объектов на классы. При этом в начальном разбиении могут участвовать не все объекты. Далее решая задачу (4) получаем начальные значения ядер. Далее можно использовать метод динамических ядер.
Примеры видов классификации
В данном разделе описаны некоторые виды классификации и соответствующие им меры близости. Приведены формулы решения задачи (4) при использовании метода динамических ядер. Для других видов классификации решение задачи (4) строится аналогично.
Сферическая модель
Один вид классификации — сеть Кохонена на сфере был описан ранее. Получим формулы для решения задачи (4) при мере близости «минус скалярное произведение» (минус перед скалярным произведением нужен для того, чтобы решать задачу минимизации (1) и (4), поскольку, чем ближе векторы, тем больше скалярное произведение).
Обозначим через x>ij объекты, принадлежащие i-му классу. Учитывая дополнительное условие на значение ядра — его единичную длину — и применяя метод множителей Лагранжа для решения задач поиска условного экстремума, получим следующую задачу:
Дифференцируя (5) по каждой из координат ядра и по множителю Лагранжа λ, и приравнивая результат дифференцирования к нулю, получим следующую систему уравнений:
Выразив из первых уравнений a>i>l и подставив результат в последнее выражение найдем λ, а затем найдем координаты ядра:
Рис. 8. Решение задачи методом динамических ядер
Подводя итог, можно сказать, что новое положение ядра есть среднее арифметическое объектов данного класса, нормированное на единичную длину.
На рис. 8. Приведено решение второго примера методом обучения сети Кохонена с уменьшением скорости с 0,5, а на рис. 9 — решение той же задачи методом динамических ядер. В качестве первоначального значения ядер выбраны два первых объекта.
Рис. 9. Решение задачи с помощью обучения сети Кохонена со снижением скорости обучения с 0,5. График суммарного изменения разностей координат ядер.
Пространственная модель
Эта модель описывает наиболее естественную классификацию. Нейрон пространственной сети Кохонена приведен в главе «Описание нейронных сетей». Ядра являются точками в пространстве объектов. Мера близости — квадрат обычного евклидова расстояния. Обучение сети Кохонена ведется непосредственно по формуле (2). Задача (4) имеет вид:
Дифференцируя (8) по каждой координате ядра и приравнивая результат к нулю получаем следующую систему уравнений:
Преобразуя полученное выражение получаем
где |K>i| — мощность i-го класса (число объектов в классе). Таким образом, оптимальное ядро класса — среднее арифметическое всех объектов класса.
Модель линейных зависимостей
Это первая модель, которая может быть решена методом динамических ядер, но не может быть получена с помощью обучения сети Кохонена, поскольку ядра не являются точками в пространстве объектов. Ядрами в данной модели являются прямые, а мерой близости — квадрат расстояния от точки (объекта) до прямой. Прямая в n—мерном пространстве задается парой векторов: a>i = (b>i, c>i). Первый из векторов задает смещение прямой от начала координат, а второй является направляющим вектором прямой. Точки прямой задаются формулой x = b + tc, где t — параметр, пробегающий значения от минус бесконечности до плюс бесконечности. t имеет смысл длины проекции вектора x-b на вектор c. Сама проекция равна tc. При положительном значении вектор проекции сонаправлен с вектором c, при отрицательном — противоположно направлен. При условии, что длина вектора c равна единице, проекция вычисляется как скалярное произведение (x–b,c). В противном случае скалярное произведение необходимо разделить на квадрат длины c. Мера близости вектора (точки) x определяется как квадрат длины разности вектора x и его проекции на прямую. При решении задачи (4) необходимо найти минимум следующей функции:
Продифференцируем целевую функцию по неизвестным t>q, c>i>r, b>i>r и приравняем результаты к нулю.
Выразим из последнего уравнения в (10) b>i>r:
В качестве b>i можно выбрать любую точку прямой. Отметим, что для любого набора векторов x>ij и любой прямой с ненулевым направляющим вектором c>i на прямой найдется такая точка b>i, что сумма проекций всех точек на прямую x = b + tc будет равна нулю. Выберем в качестве b>i такую точку. Второе слагаемое в правой части (11) является r-й координатой суммы проекций всех точек на искомую прямую и, в силу выбора точки b>i равно нулю. Тогда получаем формулу для определения b>i:
Из первых двух уравнений (10) получаем формулы для определения остальных неизвестных:
Поиск решения задачи (4) для данного вида классификации осуществляется по следующему алгоритму:
1. Вычисляем b>i по формуле (12).
2. Вычисляем t по первой формуле в (13).
3. Вычисляем c>i по второй формуле в (13).
4. Если изменение значения c>i превышает заданную точность, то переходим к шагу 2, в противном случае вычисления закончены.
Определение числа классов
До этого момента вопрос об определении числа классов не рассматривался. Предполагалось, что число классов задано исходя из каких-либо дополнительных соображений. Однако достаточно часто дополнительных соображений нет. В этом случае число классов определяется экспериментально. Но простой перебор различных чисел классов часто неэффективен. В данном разделе будет рассмотрен ряд методов, позволяющих определить «реальное» число классов.
Вниманию читателей предлагается книга, посвященная созданию первого поколения отечественных обитаемых подводных аппаратов, предназначенных для работы на глубинах более 1000 м История подводного флота, несмотря на вал публикации последнего времени, остается мало известной не только широкой общественности, но и людям, всю жизнь проработавшим в отрасли Между тем. сложность задач, стоящих перед участниками работ по «глубоководной тематике» – так это называлось в Министерстве судостроительной промышленности – можно сравнить только с теми, что пришлось решать создателям космических кораблей Но если фамилии Королева и Гагарина известны всему миру, го о главном конструкторе глубоководной техники Юрии Константиновиче Сапожкове или первом капитане-глубоководнике Михаиле Николаевиче Диомидове читатель впервые узнает из этой книги.
Рассмотрены основные металлические материалы, которые применяются в ювелирной технике, их структура и свойства. Подробно изложены литейные свойства сплавов и приведены особенности плавки драгоценных металлов и сплавов. Описаны драгоценные, полудрагоценные и поделочные камни, используемые в ювелирном деле. Приведены примеры уникальных ювелирных изделий, изготовленных мастерами XVI—XVII веков и изделия современных российских мастеров.Книга будет полезна преподавателям, бакалаврам, магистрам и аспирантам, а так же учащимся колледжей и читателям, которые желают выбрать материал для изготовления ювелирных изделий в небольших частных мастерских.Рекомендовано Министерством образования и науки Российской Федерации в качестве учебника для бакалавров, магистров по специальности 26140002 «Технология художественной обработки материалов» и аспирантов специальности 170006 «Техническая эстетика и дизайн».
Автомобиль – это источник повышенной опасности, поэтому управлять им могут только люди, прошедшие специальное обучение, имеющие медицинскую справку, стажировку.Книга посвящена вопросу охраны труда. В ней подробно изложены общие положения, которыми должны руководствоваться наниматели, внеплановые и текущие инструктажи для водителей, а также другие немаловажные моменты, обеспечивающие безопасность водителя.Отдельно рассмотрены дорожно-транспортные происшествия и их причины, исходные данные для проведения автотранспортной экспертизы, модели поведения в случаях попадания в ДТП, приближения к месту аварии, а также общий порядок оказания помощи и порядок оформления несчастных случаев.Кроме того, в книге можно найти информацию по правилам перевозки негабаритных и опасных грузов, а также системе информации об опасности (СИО).
Умение работать с благородным материалом – деревом – всегда высоко ценилось в России. Но приобретение умений и навыков мастера плотничных и столярных работ невозможно без правильного подхода к выбору материалов, инструментов, организации рабочего места, изучения технологических тонкостей, составляющих процесс обработки древесины. Эта книга покажет возможности использования этих навыков как в процессе строительства деревянного дома, так и при изготовлении мебели своими руками, поможет достичь определенных высот в этом увлекательном и полезном процессе.
Настоящий Федеральный закон принимается в целях защиты жизни, здоровья, имущества граждан и юридических лиц, государственного и муниципального имущества от пожаров, определяет основные положения технического регулирования в области пожарной безопасности и устанавливает общие требования пожарной безопасности к объектам защиты (продукции), в том числе к зданиям, сооружениям и строениям, промышленным объектам, пожарно-технической продукции и продукции общего назначения. Федеральные законы о технических регламентах, содержащие требования пожарной безопасности к конкретной продукции, не действуют в части, устанавливающей более низкие, чем установленные настоящим Федеральным законом, требования пожарной безопасности.Положения настоящего Федерального закона об обеспечении пожарной безопасности объектов защиты обязательны для исполнения: при проектировании, строительстве, капитальном ремонте, реконструкции, техническом перевооружении, изменении функционального назначения, техническом обслуживании, эксплуатации и утилизации объектов защиты; разработке, принятии, применении и исполнении федеральных законов о технических регламентах, содержащих требования пожарной безопасности, а также нормативных документов по пожарной безопасности; разработке технической документации на объекты защиты.Со дня вступления в силу настоящего Федерального закона до дня вступления в силу соответствующих технических регламентов требования к объектам защиты (продукции), процессам производства, эксплуатации, хранения, транспортирования, реализации и утилизации (вывода из эксплуатации), установленные нормативными правовыми актами Российской Федерации и нормативными документами федеральных органов исполнительной власти, подлежат обязательному исполнению в части, не противоречащей требованиям настоящего Федерального закона.