Учебное пособие по курсу «Нейроинформатика» - [23]
В этой главе будут описаны различные виды входных сигналов и способы их предобработки. В качестве примера будут рассмотрены сети с сигмоидными нелинейными преобразователями. Однако, описываемые способы предобработки применимы для сетей с произвольными нелинейными преобразователями. Единственным исключением является раздел «Оценка способности сети решить задачу», который применим только для сетей с нелинейными преобразователями, непрерывно зависящими от своих аргументов.
Наиболее важным в данной являются следующее.
При предобработке качественных признаков не следует вносить недостоверную информацию.
Сформулирована мера сложности нейросетевой задачи.
Выборочная оценка константы Липшица и оценка константы Липшица нейронной сети позволяют легко оценить способность нейронной сети решить поставленную задачу. Эти легко реализуемые процедуры позволяют сэкономить время и силы.
Правильно выбранная предобработка упрощает нейросетевую задачу.
Нейрон
Нейроны, используемые в большинстве нейронных сетей, имеют структуру, приведенную на рис. 1. На рис. 1 использованы следующие обозначения:
x — вектор входных сигналов нейрона;
α — вектор синаптических весов нейрона;
Σ — входной сумматор нейрона;
p = (α,x) — выходной сигнал входного сумматора;
σ — функциональный преобразователь;
y — выходной сигнал нейрона.
Обычно нейронные сети называют по виду функции σ(p). Хорошо известны и наиболее часто используются два вида сигмоидных сетей:
S>1: σ(p) = 1/(1+exp(-cp)),
S>2: σ(p) = p/(c+|p|),
где c — параметр, называемый «характеристикой нейрона». Обе функции имеют похожие графики.
Каждому типу нейрона соответствует свой интервал приемлемых входных данных. Как правило, этот диапазон либо совпадает с диапазоном выдаваемых выходных сигналов (например для сигмоидных нейронов с функцией S>1), либо является объединением диапазона выдаваемых выходных сигналов и отрезка, симметричного ему относительно нуля (например, для сигмоидных нейронов с функцией S>2), Этот диапазон будем обозначать как [a,b]
Различимость входных данных
Очевидно, что входные данные должны быть различимы. В данном разделе будут приведены соображения, исходя из которых, следует выбирать диапазон входных данных. Пусть одним из входных параметров нейронной сети является температура в градусах Кельвина. Если речь идет о температурах близких к нормальной, то входные сигналы изменяются от 250 до 300 градусов. Пусть сигнал подается прямо на нейрон (синаптический вес равен единице). Выходные сигналы нейронов с различными параметрами приведены в табл. 1.
Таблица 1
Входной сигнал | Нейрон типа S>1 | Нейрон типа S>2 | ||||||
---|---|---|---|---|---|---|---|---|
c=0.1 | c=0.5 | c=1 | c=2 | c=0.1 | c=0.5 | c=1 | c=2 | |
250 | 1.0 | 1.0 | 1.0 | 1.0 | 0.99960 | 0.99800 | 0.99602 | 0.99206 |
275 | 1.0 | 1.0 | 1.0 | 1.0 | 0.99964 | 0.99819 | 0.99638 | 0.99278 |
300 | 1.0 | 1.0 | 1.0 | 1.0 | 0.99967 | 0.99834 | 0.99668 | 0.99338 |
Совершенно очевидно, что нейронная сеть просто неспособна научиться надежно различать эти сигналы (если вообще способна научиться их различать!). Если использовать нейроны с входными синапсами, не равными единице, то нейронная сеть сможет отмасштабировать входные сигналы так, чтобы они стали различимы, но при этом будет задействована только часть диапазона приемлемых входных данных — все входные сигналы будут иметь один знак. Кроме того, все подаваемые сигналы будут занимать лишь малую часть этого диапазона. Например, если мы отмасштабируем температуры так, чтобы 300 соответствовала величина суммарного входного сигнала равная 1 (величина входного синапса равна 1/300), то реально подаваемые сигналы займут лишь одну шестую часть интервала [0,1] и одну двенадцатую интервала [-1,1]. Получаемые при этом при этом величины выходных сигналов нейронов приведены в табл. 2.
Таблица 2
Входной сигнал | Нейрон типа S>1 | Нейрон типа S>2 | ||||||
---|---|---|---|---|---|---|---|---|
c=0.1 | c=0.5 | c=1 | c=2 | c=0.1 | c=0.5 | c=1 | c=2 | |
250 (0.83) | 0.52074 | 0.60229 | 0.69636 | 0.84024 | 0.89286 | 0.62500 | 0.45455 | 0.29412 |
275 (0.91) | 0.52273 | 0.61183 | 0.71300 | 0.86057 | 0.90164 | 0.64706 | 0.47826 | 0.31429 |
300 (1.0) | 0.52498 | 0.62246 | 0.73106 | 0.88080 | 0.90909 | 0.66667 | 0.50000 | 0.33333 |
Сигналы, приведенные в табл. 2 различаются намного сильнее соответствующих сигналов из табл. 1. Таким образом, необходимо заранее позаботиться о масштабировании и сдвиге сигналов, чтобы максимально полно использовать диапазон приемлемых входных сигналов. Опыт использования нейронных сетей с входными синапсами свидетельствует о том, что в подавляющем большинстве случаев предварительное масштабирование и сдвиг входных сигналов сильно облегчает обучение нейронных сетей. Если заранее произвести операции масштабирования и сдвига входных сигналов, то величины выходных сигналов нейронов даже при отсутствии входных синапсов будут различаться еще сильнее (см. табл. 3).
Таблица 3
Входной сигнал | Нейрон типа S>1 | Нейрон типа S>2 | ||||||
---|---|---|---|---|---|---|---|---|
c=0.1 | c=0.5 | c=1 | c=2 | c=0.1 | c=0.5 | c=1 | c=2 | |
250 (-1) | 0.47502 | 0.37754 | 0.26894 | 0.11920 | -0.9091 | -0.6667 | -0.5000 | -0.3333 |
275 (0) | 0.50000 | 0.50000 | 0.50000 | 0.50000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
300 (1) | 0.52498 | 0.62246 | 0.73106 | 0.88080 | 0.9091 | 0.6667 | 0.5000 | 0.3333 |
Величину диапазона различимых входных сигналов можно определять различными способами. На практике в качестве диапазона различимых входных сигналов обычно используется диапазон приемлемых входных данных, исходя из того соображения, что если данные из этого интервала хороши для промежуточных нейронов, то они хороши и для входных.
Вниманию читателей предлагается книга, посвященная созданию первого поколения отечественных обитаемых подводных аппаратов, предназначенных для работы на глубинах более 1000 м История подводного флота, несмотря на вал публикации последнего времени, остается мало известной не только широкой общественности, но и людям, всю жизнь проработавшим в отрасли Между тем. сложность задач, стоящих перед участниками работ по «глубоководной тематике» – так это называлось в Министерстве судостроительной промышленности – можно сравнить только с теми, что пришлось решать создателям космических кораблей Но если фамилии Королева и Гагарина известны всему миру, го о главном конструкторе глубоководной техники Юрии Константиновиче Сапожкове или первом капитане-глубоководнике Михаиле Николаевиче Диомидове читатель впервые узнает из этой книги.
Рассмотрены основные металлические материалы, которые применяются в ювелирной технике, их структура и свойства. Подробно изложены литейные свойства сплавов и приведены особенности плавки драгоценных металлов и сплавов. Описаны драгоценные, полудрагоценные и поделочные камни, используемые в ювелирном деле. Приведены примеры уникальных ювелирных изделий, изготовленных мастерами XVI—XVII веков и изделия современных российских мастеров.Книга будет полезна преподавателям, бакалаврам, магистрам и аспирантам, а так же учащимся колледжей и читателям, которые желают выбрать материал для изготовления ювелирных изделий в небольших частных мастерских.Рекомендовано Министерством образования и науки Российской Федерации в качестве учебника для бакалавров, магистров по специальности 26140002 «Технология художественной обработки материалов» и аспирантов специальности 170006 «Техническая эстетика и дизайн».
Автомобиль – это источник повышенной опасности, поэтому управлять им могут только люди, прошедшие специальное обучение, имеющие медицинскую справку, стажировку.Книга посвящена вопросу охраны труда. В ней подробно изложены общие положения, которыми должны руководствоваться наниматели, внеплановые и текущие инструктажи для водителей, а также другие немаловажные моменты, обеспечивающие безопасность водителя.Отдельно рассмотрены дорожно-транспортные происшествия и их причины, исходные данные для проведения автотранспортной экспертизы, модели поведения в случаях попадания в ДТП, приближения к месту аварии, а также общий порядок оказания помощи и порядок оформления несчастных случаев.Кроме того, в книге можно найти информацию по правилам перевозки негабаритных и опасных грузов, а также системе информации об опасности (СИО).
Умение работать с благородным материалом – деревом – всегда высоко ценилось в России. Но приобретение умений и навыков мастера плотничных и столярных работ невозможно без правильного подхода к выбору материалов, инструментов, организации рабочего места, изучения технологических тонкостей, составляющих процесс обработки древесины. Эта книга покажет возможности использования этих навыков как в процессе строительства деревянного дома, так и при изготовлении мебели своими руками, поможет достичь определенных высот в этом увлекательном и полезном процессе.
Настоящий Федеральный закон принимается в целях защиты жизни, здоровья, имущества граждан и юридических лиц, государственного и муниципального имущества от пожаров, определяет основные положения технического регулирования в области пожарной безопасности и устанавливает общие требования пожарной безопасности к объектам защиты (продукции), в том числе к зданиям, сооружениям и строениям, промышленным объектам, пожарно-технической продукции и продукции общего назначения. Федеральные законы о технических регламентах, содержащие требования пожарной безопасности к конкретной продукции, не действуют в части, устанавливающей более низкие, чем установленные настоящим Федеральным законом, требования пожарной безопасности.Положения настоящего Федерального закона об обеспечении пожарной безопасности объектов защиты обязательны для исполнения: при проектировании, строительстве, капитальном ремонте, реконструкции, техническом перевооружении, изменении функционального назначения, техническом обслуживании, эксплуатации и утилизации объектов защиты; разработке, принятии, применении и исполнении федеральных законов о технических регламентах, содержащих требования пожарной безопасности, а также нормативных документов по пожарной безопасности; разработке технической документации на объекты защиты.Со дня вступления в силу настоящего Федерального закона до дня вступления в силу соответствующих технических регламентов требования к объектам защиты (продукции), процессам производства, эксплуатации, хранения, транспортирования, реализации и утилизации (вывода из эксплуатации), установленные нормативными правовыми актами Российской Федерации и нормативными документами федеральных органов исполнительной власти, подлежат обязательному исполнению в части, не противоречащей требованиям настоящего Федерального закона.