У атомов тоже есть сердце. Резерфорд. Атомное ядро - [4]

Шрифт
Интервал

Незадолго до этого Резерфорд направлял альфа-лучи на минерал, называемый слюдой, и в результате узнал, что альфа-лучи несколько отклонялись от своей траектории. Он не понимал только причину, по которой это происходило.


ВНУТРИ АТОМА

Эрнст Марсден был тем самым студентом, о котором говорил Гейгер. Данный эксперимент оказался простым, изящным и привел к находке, которая сделала его одним из самых необыкновенных опытов в истории физики.


Выяснив, как устроено ядро атомов, мы столкнулись с величайшей тайной в мире, если не считать тайны самой жизни.

Эрнест Резерфорд


Эксперимент заключался в направлении альфа-частиц, то есть частиц, возникающих в результате радиоактивных процессов и, как выяснилось позже, представляющих собой ядра гелия, на металлическую пластину в вакуумной камере.

Резерфорд и Гейгер наблюдали, что при прохождении лучей через пластину имели место случайные отклонения. Для эксперимента они выбрали пластины из золотой фольги, чтобы альфа-частицы не полностью поглощались металлом и было возможным изучить взаимодействие при прохождении через пластину.

Резерфорд не случайно остановился на альфа-частицах. Исследование радиоактивности несколькими годами ранее обеспечило ему Нобелевскую премию. Теперь альфа-частицы были для него не основным объектом интереса, а скорее инструментом для изучения внутреннего строения атомов, своеобразным ключом к пониманию составляющих материи.

РИСУНОК 1: В приведшем к открытию атомного ядра эксперименте от источника альфа-излучения исходил поток альфа-частиц, бомбардировавших золотую фольгу, которую окружал экран, флуоресцирующий под воздействием альфа-частиц.

РИСУНОК 2: Модель атома Томсона: отрицательно заряженные частицы -плавают· в положительно заряженном веществе.


За тончайшей пластиной из фольги в качестве детектора располагался экран из сульфида цинка. Характеристикой этого вещества является испускание флуоресцентного свечения при воздействии альфа-частиц. В ту эпоху наблюдать флуоресцентное свечение можно было только под микроскопом, направленным на зону воздействия частицы. Современные электронные детекторы с легкостью справляются с подсчетом всех участков воздействия, но в те времена такая работа была возможна только при прямом наблюдении и последовательном подсчете вспышек света. До начала эксперимента глаза должны были привыкнуть к темноте, поскольку при расширенных зрачках легче наблюдать вспышки. Речь идет о кропотливой и монотонной работе, однако вспышки позволяли установить место воздействия частицы на детектор-экран, а значит, проследить траекторию частиц, проникавших сквозь фольгу. Для получения альфа-частиц использовались радий или радон, два высокорадиоактивных элемента. Чтобы направить лучи в нужную сторону, их источник помещали в поглощающий излучение свинцовый сосуд с тонкой щелью, через которую лучи направлялись в вакуумную камеру на расположенную в ней фольгу (рисунок 1).

Единственной известной на тот момент субатомной частицей были электроны, обладающие отрицательным зарядом и массой, ничтожно малой по сравнению с массой атома. Так как общий заряд атома был нейтральным, Дж. Дж. Томсон, открывший электроны, предположил, что отрицательные заряды должны " плавать" в легкой положительно заряженной субстанции, некоем тумане (как если бы атом был аквариумом с рыбками-электронами и положительно заряженной водой). Данная модель атома получила название модели Томсона (рисунок 2), хотя более распространенный термин — "пудинговая модель" (пудинг, изюмом в котором стали электроны). В этой концепции обращает на себя внимание тот факт, что в ней отсутствуют другие частицы, помимо электронов.

РИС.3

РИС. 4

РИС. 5

Согласно модели Томсона атомы состоят из частиц, электронов, -плавающих· в положительно заряженной субстанции.

При бомбардировке атомов альфа- частицами альфа- частицы должны проходить сквозь атомы беспрепятственно, не отклоняясь (рисунок 3). Однако эксперименты показали,что часть из них отклоняется (рисунок 4). Резерфорд пришел к выводу, что внутри атомов вероятно, присутствует что-то еще, не замеченное ранее.

Он предположил, что внутри атома имеется массивное положительно заряженное ядро (рисунок 5).


По логике, в описанном выше эксперименте альфа-частицы должны были проходить сквозь фольгу, практически не отклоняясь, так как согласно предположениям внутри атома не было ничего твердого, кроме электронов, значительно проигрывавших в размере альфа-частицам (см. рисунок 3), а значит, частицы должны следовать по прямой траектории к детектору-экрану. Резерфорда всегда удивляли наблюдаемые им незначительные отклонения, противоречившие модели атома Томсона. Если пудинговая модель верна, то с чем сталкивались частицы? Что изменяло их траекторию? (см. рисунок 4)

Этот досадный и неожиданный феномен всерьез увлек Резерфорда. Проведенные ранее исследования доказывали, что для изменения траектории альфа-частиц требуются тысячи вольт. Были ли связаны наблюдаемые отклонения с неточностями при реализации эксперимента или с расположением аппаратов? Возможно, речь шла о каких-то специфических свойствах элементов, участвовавших в эксперименте?


Еще от автора Роджер Корхо Оррит
Получение энергии. Лиза Мейтнер. Расщепление ядра

Женщина, еврейка и ученый — непростая комбинация для бурного XX века. Австрийка по происхождению, Лиза Мейтнер всю жизнь встречала снисходительность и даже презрение со стороны коллег-мужчин и страдала от преследований нацистов. Ее сотрудничество с немецким химиком Отто Ганом продолжалось более трех десятилетий и увенчалось открытием нового элемента — протактиния — и доказательством возможности расщепления ядра. Однако, несмотря на этот вклад, Мейтнер было отказано в Нобелевской премии. Она всегда отстаивала необходимость мирного использования ядерной энергии, в изучении которой сыграла столь заметную роль.


Рекомендуем почитать
Ньютон. Закон всемирного тяготения. Самая притягательная сила природы

Исаак Ньютон возглавил научную революцию, которая в XVII веке охватила западный мир. Ее высшей точкой стала публикация в 1687 году «Математических начал натуральной философии». В этом труде Ньютон показал нам мир, управляемый тремя законами, которые отвечают за движение, и повсеместно действующей силой притяжения. Чтобы составить полное представление об этом уникальном ученом, к перечисленным фундаментальным открытиям необходимо добавить изобретение дифференциального и интегрального исчислений, а также формулировку основных законов оптики.


Легенда о Вавилоне

Петр Ильинский, уроженец С.-Петербурга, выпускник МГУ, много лет работал в Гарвардском университете, в настоящее время живет в Бостоне. Автор многочисленных научных статей, патентов, трех книг и нескольких десятков эссе на культурные, политические и исторические темы в печатной и интернет-прессе США, Европы и России. «Легенда о Вавилоне» — книга не только о более чем двухтысячелетней истории Вавилона и породившей его месопотамской цивилизации, но главным образом об отражении этой истории в библейских текстах и культурных образах, присущих как прошлому, так и настоящему.


Открытия и гипотезы, 2005 №11

Научно-популярный журнал «Открытия и гипотезы» представляет свежий взгляд на самые главные загадки вселенной и человечества, его проблемы и открытия. Никогда еще наука не была такой интересной. Представлены теоретические и практические материалы.


Жители планет

«Что такое на тех отдаленных светилах? Имеются ли достаточные основания предполагать, что и другие миры населены подобно нашему, и если жизнь есть на тех небесных землях, как на нашей подлунной, то похожа ли она на нашу жизнь? Одним словом, обитаемы ли другие миры, и, если обитаемы, жители их похожи ли на нас?».


Знание-сила, 2000 № 07 (877)

Ежемесячный научно-популярный и научно-художественный журнал.


Популярно о микробиологии

В занимательной и доступной форме автор вводит читателя в удивительный мир микробиологии. Вы узнаете об истории открытия микроорганизмов и их жизнедеятельности. О том, что известно современной науке о морфологии, методах обнаружения, культивирования и хранения микробов, об их роли в поддержании жизни на нашей планете. О перспективах разработок новых технологий, применение которых может сыграть важную роль в решении многих глобальных проблем, стоящих перед человечеством.Книга предназначена широкому кругу читателей, всем, кто интересуется вопросами современной микробиологии и биотехнологии.