Тысяча и один вопрос о погоде - [18]
142. Как определяется высота облаков? Для измерения расстояния от земной поверхности до основания облака служат следующие приборы: воздушные шары, потолочные прожекторы, теодолиты, облакомеры и радиолокаторы. Метеорологи-наблюдатели также могут определять высоту облаков (визуально) с удовлетворительной точностью. Этот способ применяется лишь в тех случаях, когда не требуется большая точность измерений или когда проведение измерений с помощью приборов затруднено по техническим причинам.
143. Как используется воздушный шар для измерения высоты нижней границы облаков? Это не самый точный прибор; обычно воздушные шары применяются для определения высоты облаков, потолок которых не превышает или немного превышает 800 м. Эти маленькие шары весом около 10 г, окрашенные так, чтобы за ними было легко следить, наполняются водородом — газом легче воздуха — в количестве, достаточном для того, чтобы шар мог поднять груз в 45 г. Средняя скорость свободного подъема шара точно установлена — первые 30 м он преодолевает примерно за 8 секунд, а каждые последующие 30 м — за 15 секунд. Отсчет времени подъема шара ведется от момента выпуска до исчезновения его в облачном слое. Так как скорость его подъема известна заранее, то расстояние до основания облака можно определить, умножив время подъема на его скорость. Однако учитывая вертикальные движения воздуха в нижнем слое атмосферы, нельзя назвать этот метод слишком точным.
144. Как применяются теодолит и прожектор? С помощью обоих этих устройств высоту облаков определяют в ночное время. Мощный источник света, обычно удаленный от наблюдателя на 150–300 м, вертикально проецирует луч света на основание облака. Наблюдатель направляет трубу теодолита на пятно света на облаке, добиваясь, чтобы это пятно попало в место пересечения нитей теодолита. Угол, образованный линией, соединяющей наблюдателя со световым пятном, и земной поверхностью, измеряется с помощью отвеса; он располагается вертикально, когда свободно закреплен на теодолите, и туго натягивается, показывая на шкале, нанесенной на одной из сторон прибора, угол прицеливания. Затем наблюдатель определяет расстояние от прожектора до своего местонахождения и угол прицеливания проецируемого светового пятна. Правильно решив триангуляционную задачу, он может, пользуясь тригонометрической таблицей, быстро определить расстояние от земной поверхности до основания облака.
145. Как устроен измеритель высоты облаков? Этот электронный прибор представляет собой более совершенное устройство по сравнению с теодолитом, описанным в предыдущем вопросе. Измерения, проводимые с его помощью, основаны на том же принципе триангуляции и на определении угла, под которым луч света проецируется на основание облака; но устройство это более сложное и эффективное. Им можно пользоваться как днем, так и ночью, с его помощью можно вести постоянную запись значений высоты облаков и измерять эту высоту с больших расстояний и с большей точностью. Измеритель высоты облаков представляет собой поворотный прожектор, через короткие интервалы направляющий к основанию облака световые волны, которые модулируются в известных частотах. Детектор — индикатор положения, содержащий избирательный электронный блок, соединен с сигнальной линией, находящейся на известном расстоянии. Этот блок перехватывает световой луч, когда он отражается от основания облака. Автоматические сигналы, возникающие при перехвате, непосредственно передают значения высоты нижней границы облака.
146. Как измеряется мощность облака с помощью радиолокатора? Для определения вертикальной протяженности облака — от основания его до вершины — могут использоваться радиолокационные устройства. Радиолокатор посылает вертикально вверх радиосигналы на коротких волнах. Когда радиоволны ударяются в облачный слой, часть их энергии, отразившись от него, возвращается к земной поверхности. Исходя из характера этого отражения и расчетов, основанных на учете длины импульсов радиолокатора и частоты их повторения, можно получить хороший вертикальный разрез облака.
147. Как определяется направление, в котором движутся облака? Устройством, используемым для этой цели, является нефоскоп. Существует два типа нефоскопов — прямого визирования и зеркального визирования. Зеркальный нефоскоп представляет собой горизонтально устанавливающееся круглое зеркало из темного стекла, в которое можно улавливать отражение облака. Это отражение можно наблюдать через окуляр, укрепленный на подставке зеркала. Окуляр регулируется по высоте и поднимается таким образом, чтобы его можно было поворачивать вокруг ободка зеркала. Шкала направления нанесена по периметру самого зеркала так, чтобы можно было наблюдать за миниатюрным отражением неба в зеркале, разделенном на части линиями, соответствующими направлениям движения облаков.
Нефоскоп прямого визирования, или грабельный нефоскоп, состоит из длинного вращающегося вертикального стержня, на верхушке которого имеется более короткий горизонтальный пруток. Перпендикулярно этому прутку и на равном расстоянии друг от друга размещены зубцы. Наблюдатель соединяет наблюдаемое облако с центральным вертикальным зубцом воображаемой линией и, когда облако проходит над вертикальными боковыми зубцами, определяет направление его движения по диску направления, прикрепленному к стержню.
Послевоенные годы знаменуются решительным наступлением нашего морского рыболовства на открытые, ранее не охваченные промыслом районы Мирового океана. Одним из таких районов стала тропическая Атлантика, прилегающая к берегам Северо-западной Африки, где советские рыбаки в 1958 году впервые подняли свои вымпелы и с успехом приступили к новому для них промыслу замечательной деликатесной рыбы сардины. Но это было не простым делом и потребовало не только напряженного труда рыбаков, но и больших исследований ученых-специалистов.
Настоящая монография посвящена изучению системы исторического образования и исторической науки в рамках сибирского научно-образовательного комплекса второй половины 1920-х – первой половины 1950-х гг. Период сталинизма в истории нашей страны характеризуется определенной дихотомией. С одной стороны, это время диктатуры коммунистической партии во всех сферах жизни советского общества, политических репрессий и идеологических кампаний. С другой стороны, именно в эти годы были заложены базовые институциональные основы развития исторического образования, исторической науки, принципов взаимоотношения исторического сообщества с государством, которые определили это развитие на десятилетия вперед, в том числе сохранившись во многих чертах и до сегодняшнего времени.
Монография посвящена проблеме самоидентификации русской интеллигенции, рассмотренной в историко-философском и историко-культурном срезах. Логически текст состоит из двух частей. В первой рассмотрено становление интеллигенции, начиная с XVIII века и по сегодняшний день, дана проблематизация важнейших тем и идей; вторая раскрывает своеобразную интеллектуальную, духовную, жизненную оппозицию Ф. М. Достоевского и Л. Н. Толстого по отношению к истории, статусу и судьбе русской интеллигенции. Оба писателя, будучи людьми диаметрально противоположных мировоззренческих взглядов, оказались “versus” интеллигентских приемов мышления, идеологии, базовых ценностей и моделей поведения.
Монография протоиерея Георгия Митрофанова, известного историка, доктора богословия, кандидата философских наук, заведующего кафедрой церковной истории Санкт-Петербургской духовной академии, написана на основе кандидатской диссертации автора «Творчество Е. Н. Трубецкого как опыт философского обоснования религиозного мировоззрения» (2008) и посвящена творчеству в области религиозной философии выдающегося отечественного мыслителя князя Евгения Николаевича Трубецкого (1863-1920). В монографии показано, что Е.
Эксперты пророчат, что следующие 50 лет будут определяться взаимоотношениями людей и технологий. Грядущие изобретения, несомненно, изменят нашу жизнь, вопрос состоит в том, до какой степени? Чего мы ждем от новых технологий и что хотим получить с их помощью? Как они изменят сферу медиа, экономику, здравоохранение, образование и нашу повседневную жизнь в целом? Ричард Уотсон призывает задуматься о современном обществе и представить, какой мир мы хотим создать в будущем. Он доступно и интересно исследует возможное влияние технологий на все сферы нашей жизни.
Что такое, в сущности, лес, откуда у людей с ним такая тесная связь? Для человека это не просто источник сырья или зеленый фитнес-центр – лес может стать местом духовных исканий, служить исцелению и просвещению. Биолог, эколог и журналист Адриане Лохнер рассматривает лес с культурно-исторической и с научной точек зрения. Вы узнаете, как устроена лесная экосистема, познакомитесь с различными типами леса, характеризующимися по составу видов деревьев и по условиям окружающей среды, а также с видами лесопользования и с некоторыми аспектами охраны лесов. «Когда видишь зеленые вершины холмов, которые волнами катятся до горизонта, вдруг охватывает оптимизм.