Творения рук человеческих (Естественная история машин) - [32]
Европейская практика выработала два основных типа этих машин: с вращающимся корпусом и башенного типа, когда поворачивалась только «головка» мельницы вместе с крыльями и валом. Как в том, так и в другом случае передача к рабочему органу осуществлялась через зубчатый передаточный механизм, колеса были, как правило, деревянными, а зубья вырубались топором.
Не забудем, что водяные мельницы были привязаны к воде, а ветряные можно было поставить лишь в местах, доступных для ветра. Там же, где не было ни того, ни другого, роль двигателя приходилось выполнять или животным, или самому человеку.
И вот два века назад человек опять столкнулся с той же задачей, которая была решена (в отношении мукомольных мельниц) еще его пращурами прошлых тысячелетий. Новые технологические машины стали улучшенными органами человека, они делали ту же самую работу, что и ремесленник, но лучше и быстрее. Впрочем, вначале, вероятно, не лучше. Но управлять ими, приводить их в движение приходилось самому человеку или животным. По словам Карла Маркса, когда изобретение прядильной машины возвестило о промышленной революции, ее изобретатель ни звуком не обмолвился о том, что осел, а не человек приводит эту машину в движение, и тем не менее эта роль действительно досталась ослу.
Не следует недооценивать роли «живых сил» в развитии промышленной революции: человек далеко не сразу передал «силовую часть» производства машине. Мы видели, что ранее машина заменяла лишь физическую силу человека. Теперь она заменила его руку, и стало ясно, что физических сил-то и не хватает. Интересно, что в то время когда промышленный переворот завершился в Англии и завершался во Франции, математик и механик академик Шарль Дюпен (ученик Гаспара Монжа) дал сравнительную оценку продуктивных сил обеих стран, приравняв силу одной лошади силе семи человек. Он подсчитал также силы водяных и ветряных мельниц, кроме того, силы паровых машин в промышленности и судоходстве. У него получилось, что к концу первой четверти прошлого века во Франции действовало (округленно) 49 000 сил, а в Англии — 60 000 сил. Как следовало из его расчетов, во-первых, в результате промышленного переворота Англия удвоила свой энергетический потенциал, а Франция лишь на одну треть увеличила его; во-вторых, в сельском хозяйстве оказалось занято более половины производительных сил, в-третьих, эти цифры показали, какая значительная доля промышленного труда (6000—8000 сил) падала на «живые силы». И наконец, из расчетов с очевидностью вытекало, каким колоссальным энергетическим потенциалом становилась паровая машина.
Поиски промышленного двигателя, на который можно было бы возложить существенную часть труда и который к тому же не был бы связан с какой-то определенной местностью, продолжались на протяжении всего XVIII в. Испанец Бласко де Гарай, француз Дени Папен, немец Готфрид Лейбниц, русский Иван Ползунов, англичанин Томас Ньюкомен и много других большей частью безвестных изобретателей старались найти такую машину, которая смогла бы освободить человека от тяжелой и изнурительной работы и обеспечила бы быстрое развитие промышленности. Как известно, честь решения этой задачи выпала на долю Джеймса Уатта, и вскоре изобретенная им паровая машина, вытеснив сначала человека и животных, затем водяные и ветряные двигатели, становится основным поставщиком энергии для промышленности и транспорта.
Модификацией паровой машины явился двигатель внутреннего сгорания. При этом принципиальная схема рабочей части машины не менялась, но в зависимости от характеристик газообразующего тела менялось все ее оснащение. Следующим шагом стал... возврат к водяному колесу, но уже на новой технической основе, появляются турбины, активная и реактивная, приводимые в движение паром и водой.
В середине XIX в. начинается активное освоение электричества — новой силы природы, которая до тех пор была известна лишь в некоторых своих проявлениях. Внедряются электрические машины—динамо-машины и электродвигатели. Все они основаны на роторном принципе; интересно, что во всех машинах-двигателях используются лишь два принципиальных типа движения — возвратно-поступательное движение известное еще до нашей эры, и вращательное движение характерное для водяных и ветряных колес, турбинн электрических машин. Там, где машина заменяет непосредственно физическую силу человека, как оказывается, можно пользоваться самыми простыми из всех возможных типов движения.
Совершенно иное положение с теми машинами которые заменяют умение человека или, образно говоря, его руку. Здесь можно изобрести бесчисленное множество вариантов, и уже давно изобретатели стремятся воспроизвести движение руки человека или хотя бы получить при помощи механизмов тот же самый результат. Начатые в текстильной промышленности, поиски эти распространились затем и на другие отрасли производства, что привело к созданию современных технологических машин. Одновременно идут поиски человекоподобных машин, которые могли бы выполнять если и не все, то хотя бы некоторые функции человека. Эти поиски оказались безуспешными, но в их результате механики создали целый ряд автоматов: их опыт даже с отрицательным результатом не пропал даром.
Вниманию читателей предлагается книга, посвященная созданию первого поколения отечественных обитаемых подводных аппаратов, предназначенных для работы на глубинах более 1000 м История подводного флота, несмотря на вал публикации последнего времени, остается мало известной не только широкой общественности, но и людям, всю жизнь проработавшим в отрасли Между тем. сложность задач, стоящих перед участниками работ по «глубоководной тематике» – так это называлось в Министерстве судостроительной промышленности – можно сравнить только с теми, что пришлось решать создателям космических кораблей Но если фамилии Королева и Гагарина известны всему миру, го о главном конструкторе глубоководной техники Юрии Константиновиче Сапожкове или первом капитане-глубоководнике Михаиле Николаевиче Диомидове читатель впервые узнает из этой книги.
Рассмотрены основные металлические материалы, которые применяются в ювелирной технике, их структура и свойства. Подробно изложены литейные свойства сплавов и приведены особенности плавки драгоценных металлов и сплавов. Описаны драгоценные, полудрагоценные и поделочные камни, используемые в ювелирном деле. Приведены примеры уникальных ювелирных изделий, изготовленных мастерами XVI—XVII веков и изделия современных российских мастеров.Книга будет полезна преподавателям, бакалаврам, магистрам и аспирантам, а так же учащимся колледжей и читателям, которые желают выбрать материал для изготовления ювелирных изделий в небольших частных мастерских.Рекомендовано Министерством образования и науки Российской Федерации в качестве учебника для бакалавров, магистров по специальности 26140002 «Технология художественной обработки материалов» и аспирантов специальности 170006 «Техническая эстетика и дизайн».
Автомобиль – это источник повышенной опасности, поэтому управлять им могут только люди, прошедшие специальное обучение, имеющие медицинскую справку, стажировку.Книга посвящена вопросу охраны труда. В ней подробно изложены общие положения, которыми должны руководствоваться наниматели, внеплановые и текущие инструктажи для водителей, а также другие немаловажные моменты, обеспечивающие безопасность водителя.Отдельно рассмотрены дорожно-транспортные происшествия и их причины, исходные данные для проведения автотранспортной экспертизы, модели поведения в случаях попадания в ДТП, приближения к месту аварии, а также общий порядок оказания помощи и порядок оформления несчастных случаев.Кроме того, в книге можно найти информацию по правилам перевозки негабаритных и опасных грузов, а также системе информации об опасности (СИО).
Умение работать с благородным материалом – деревом – всегда высоко ценилось в России. Но приобретение умений и навыков мастера плотничных и столярных работ невозможно без правильного подхода к выбору материалов, инструментов, организации рабочего места, изучения технологических тонкостей, составляющих процесс обработки древесины. Эта книга покажет возможности использования этих навыков как в процессе строительства деревянного дома, так и при изготовлении мебели своими руками, поможет достичь определенных высот в этом увлекательном и полезном процессе.
Настоящий Федеральный закон принимается в целях защиты жизни, здоровья, имущества граждан и юридических лиц, государственного и муниципального имущества от пожаров, определяет основные положения технического регулирования в области пожарной безопасности и устанавливает общие требования пожарной безопасности к объектам защиты (продукции), в том числе к зданиям, сооружениям и строениям, промышленным объектам, пожарно-технической продукции и продукции общего назначения. Федеральные законы о технических регламентах, содержащие требования пожарной безопасности к конкретной продукции, не действуют в части, устанавливающей более низкие, чем установленные настоящим Федеральным законом, требования пожарной безопасности.Положения настоящего Федерального закона об обеспечении пожарной безопасности объектов защиты обязательны для исполнения: при проектировании, строительстве, капитальном ремонте, реконструкции, техническом перевооружении, изменении функционального назначения, техническом обслуживании, эксплуатации и утилизации объектов защиты; разработке, принятии, применении и исполнении федеральных законов о технических регламентах, содержащих требования пожарной безопасности, а также нормативных документов по пожарной безопасности; разработке технической документации на объекты защиты.Со дня вступления в силу настоящего Федерального закона до дня вступления в силу соответствующих технических регламентов требования к объектам защиты (продукции), процессам производства, эксплуатации, хранения, транспортирования, реализации и утилизации (вывода из эксплуатации), установленные нормативными правовыми актами Российской Федерации и нормативными документами федеральных органов исполнительной власти, подлежат обязательному исполнению в части, не противоречащей требованиям настоящего Федерального закона.