Том 40. Математическая планета. Путешествие вокруг света - [2]

Шрифт
Интервал

В Математике используются все более сложные инструменты и устройства. Если Платон, решая задачи на построение, довольствовался линейкой и циркулем, то современная наука немыслима без передовых технологий, начиная от калькулятора и заканчивая сложнейшими компьютерными программами.

Математике присуща универсальность, всеобщность, но эта всеобщность прежде всего носит институциональный и априорный характер. Она формулируется в академических учреждениях и координируется посредством образовательных проектов. Грубо говоря, Математика, которую учат и преподают на востоке и западе, к северу и к югу от экватора, практически одинакова.

Но всеобщность Математики всех народов и культур мира проявляется и еще одним способом: развитие математических идей и методов происходит повсеместно.

С этой точки зрения математика представляет собой межкультурный феномен, и здесь ее следует писать уже с маленькой буквы. Автором этой идеи стал Алан Бишоп в 1991 году. Из его книги «Приобщение к математической культуре. Обучение математике с точки зрения культуры» («Mathematical Enculturation. A Cultural Perspective on Mathematics Education») мы узнали о том, какую роль играет математика как часть культуры и важнейший элемент механизма ее передачи.

Стереотип культурного человека, практически не знающего математики или избегающего этой строгой науки, должен уйти в прошлое. Понятие культуры неявно подразумевает множество контекстов, среди которых непременно найдется место и для математики. Да и может ли существовать народ или культура без нее? Конечно же, нет.

Культура — это совокупность знаний, которые накапливаются людьми с течением времени, характеризуют их образ жизни и помогают выживать. Группы людей, изолированные друг от друга, могут сформировать разные культуры. Эти различия проявляются в социальных связях, в архитектуре жилища, пищевых пристрастиях, механизмах выживания, мифах, страхах и так далее. Со временем в каждой культуре формируются системы общественной и политической организации, язык, представления о мире, ритуалы и верования, технологии и другие проявления, включающие музыку, танцы, орнаменты.

Все эти процессы происходили всегда и практически повсеместно, но Запад узнал о них лишь несколько веков назад. До XV века европейцам ничего не было известно об Американском континенте, и они едва ли представляли, что происходит за пределами региона, который сегодня называется Европой. О том, что находится за Индией, европейцы узнали только из рассказов Марко Поло, совершившего путешествие в Сипангу (ныне Китай). Они не знали ни об Океании, ни о Тихом океане. Остров-континент Австралия на самых первых картах назывался Terra Incognita — «неизвестная земля».

И тем не менее уже несколько тысяч лет назад все эти земли, неизвестные европейцам, были заселены людьми с собственными системами знаний. Эти люди общались на самых разных языках, некоторым даже была известна письменность. Они жили в домах, построенных при помощи орудий труда, позволявших обрабатывать природные материалы — дерево, бамбук, глину, листья и так далее. Часто эти люди проводили свободное время за игрой в камешки, которые определенным образом укладывались в углубления, проделанные в деревянных досках. Часто они путешествовали и торговали с соседями на суше и в открытом море.

Эти народы знали, как нужно жить. Никто не усомнится в том, что они умели охотиться, строить дома, готовить пищу, путешествовать по морю, творить, говорить и играть. А также им были известны счет, вычисления и измерения. Но если каждый народ способен создать собственные, присущие только ему проявления культуры, например систему верований, представления о мире, архитектуру, систему торгового обмена или искусство, разве не может таким же продуктом культуры оказаться и математика?

Математика, которую может создать народ или группа людей, называется этноматематикой. Этот термин придумал бразильский математик и преподаватель Убиратан д’Амброзио в конце 1980-х. В истории человечества существовало и существует множество народов и культур, и присущие им математические идеи превращают наш мир в мир этноматематики.

* * *

РОДИТЕЛИ ЭТНОМАТЕМАТИКИ

Связь между математикой и культурой была отмечена уже в первых антропологических исследованиях, среди которых выделяются труды Гэя и Коула о народе кпелле в Либерии. Однако само понятие «этноматематика» и совокупность знаний, которые сегодня объединены этим термином, определили профессора Алан Бишоп (Соединенное Королевство) и Убиратан д'Амброзио (Бразилия). Немалую роль также сыграли работы Паулуса Жердеса (Мозамбик), Марсии Ашер (США) и Клаудии Заславски (США).

Убиратан д’Амброзио родился в Сан-Паулу и получил степень доктора математики в местном университете. Затем он продолжил исследования на кафедре математики Брауновского университета города Провиденс, штат Род-Айленд (США).

Алан Бишоп — почетный профессор факультета преподавания австралийского Университета Монаша, однако свою научную карьеру он начал в Кембридже (Соединенное Королевство). Этот ученый — советник ЮНЕСКО в области преподавания математики, техники и науки.


Еще от автора Микель Альберти
Том 20. Творчество  в  математике. По каким правилам ведутся игры разума

В чем состоит загадка творчества? Существуют ли правила созидания? Действительно ли решение сложной задачи можно найти только в моменты удивительного озарения? Этими вопросами, наверное, задавался каждый из нас. Цель этой книги — рассказать о правилах творчества, его свойствах и доказать, что творчество доступно многим. Мы творим, когда мы размышляем, когда задаемся вопросами о жизни. Вот почему в основе математического творчества лежит умение задавать правильные вопросы и находить на них ответы.


Рекомендуем почитать
Тайны чисел: Математическая одиссея

«Умение математиков заглядывать в будущее наделило тех, кто понимает язык чисел, огромным могуществом. От астрономов древних времен, способных предсказать движения планет в ночном небе, до сегодняшних управляющих хедж-фондами, прогнозирующих изменения цен на фондовом рынке, – все они использовали математику, чтобы постичь будущее. Сила математики в том, что она может гарантировать стопроцентную уверенность в свойствах мира». Маркус дю Сотой Профессор математики Оксфордского университета, заведующий кафедрой Симони, сменивший на этой должности Ричарда Докинза, Маркус дю Сотой приглашает вас в незабываемое путешествие по необычным и удивительным областям науки, лежащей в основе каждого аспекта нашей жизни. В формате pdf A4 сохранен издательский дизайн.


Новый взгляд на мир. Фрактальная геометрия

Хотя в природе всегда существовали объекты с неравномерной и даже хаотичной структурой, ученые долгое время не могли описать их строение математическим языком. Понятие фракталов появилось несколько десятков лет назад. Именно тогда стало ясно, что облака, деревья, молнии, сталактиты и даже павлиний хвост можно структурировать с помощью фрактальной геометрии. Более того, мы сами в состоянии создавать фракталы! В результате последовательного возведения числа в квадрат появляется удивительное по красоте и сложности изображение, которое содержит в себе новый мир…


Теория расчета нефтяных аппаратов высокого давления

Монография по теории расчета нефтяных аппаратов (оболочек корпусов). Рассмотрены трехмерная и осесимметричная задачи теории упругости, реализация расчета методом конечных элементов. Написана для обмена опытом между специалистами. Предназначается для специалистов по разработке конструкций нефтяного статического оборудования (емкостей, колонн и др.) проектных институтов, научно-исследовательских институтов, заводов нефтяного машиностроения, инжиниринговых компаний, профессорско-преподавательского состава технических университетов.


Алгоритм решения 10 проблемы Гильберта

Всем известно, что существуют тройки натуральных чисел, верных для Теоремы Пифагора. Но эти числа в основном находили методом подбора. И если доказать, что есть некий алгоритм нахождения этих троек чисел, то возможно утверждение о том, что 10 проблема Гильберта неразрешима ошибочно..


Квантовый оптоэлектронный генератор

В книге развита теория квантового оптоэлектронного генератора (ОЭГ). Предложена модель ОЭГ на базе полуклассических уравнений лазера. При анализе доказано, что главным источником шума в ОЭГ является спонтанный шум лазера, обусловленный квантовой природой. Приводятся схемы и экспериментальные результаты исследования малошумящего ОЭГ, предназначенного для применения в различных областях военно-космической сферы.


У интуиции есть своя логика. Гёдель. Теоремы о неполноте

Курт Гёдель изменил понимание математики. Две теоремы о неполноте, сформулированные им в 1931 году, с помощью формальной логики выявили хрупкость фундамента великого здания математики, которое усердно строили со времен Евклида. Научное сообщество было вынуждено признать, что справедливость той или иной гипотезы может лежать за гранью любой рациональной попытки доказать ее, и интуицию нельзя исключить из царства математики. Гёдель, получивший образование в благополучной Вене межвоенного периода, быстро заинтересовался эпистемологией и теорией доказательств.