Том 33. Разум, машины и математика. Искусственный интеллект и его задачи - [34]
Город, построенный в игреSimCity.
Первое свойство: агрегирование
Агрегирование — это объединение простых сущностей, в результате которого образуется система, более сложная, чем сумма ее составных частей. Представьте себе муравейник и муравьев — адаптируемость всей колонии к изменениям среды намного выше, чем адаптируемость отдельного муравья. Простые сущности, образующие систему, называются агентами.
Агрегирование является рекурсивным процессом: агент, возникший в результате агрегирования других, более простых агентов, может объединиться с другими агентами того же или другого вида и образовать агрегированный агент второго уровня.
К примеру, результатом агрегирования конечной продукции, потребленной обществом, капиталовложений и государственных расходов будет валовый внутренний продукт страны.
Следует отметить, что коммуникация между элементами одной категории или между элементами, образующими объект более высокого уровня, не является частью агрегирования, однако без нее адаптация к среде невозможна.
Первый механизм: присвоение меток
Присвоение меток — механизм, активно упрощающий агрегирование агентов. Присвоение меток не только упрощает идентификацию агентов, но и помогает разрушить симметрию, часто возникающую при агрегировании в сложных системах. К примеру, если мы начнем вращать белый бильярдный шар в одном направлении и на его поверхности будут отсутствовать какие-либо метки, то наблюдатель едва ли сможет увидеть, что шар вращается, и тем более не сможет определить скорость вращения.
Если же мы нанесем на поверхность шара метку в любой точке за исключением тех двух, в которых ось вращения шара пересекает его поверхность, то наблюдатель легко сможет определить направление и скорость вращения.
Агенты при агрегировании помечаются множеством разных меток, начиная от штандартов с изображением орла — отличительных знаков римских легионов, и заканчивая сложными метками, которыми современные телекоммуникационные устройства помечают передаваемые сообщения (эти метки указывают, в каком порядке следуют части сообщения, чтобы получатель мог восстановить сообщение целиком, а также содержат сложные механизмы обнаружения возможных ошибок в сообщении или самой метке в процессе передачи). Разумеется, не все метки должны быть видимыми: к примеру, млекопитающие обоих полов, принадлежащие к определенным видам, в период спаривания выделяют невидимые глазу вещества — феромоны.
Метки упрощают избирательное взаимодействие между агентами, так как позволяют различать экземпляры одного и того же класса агентов или различные составные части агента. На основе меток возможна реализация фильтров, схем сотрудничества, а также видообразование. Агенты также могут сохранять агрегированное состояние, и их метки будут оставаться неизменными, даже если будут меняться составные части агента более высокого уровня. По сути, нанесение меток — механизм, упрощающий организацию агентов и коммуникацию между ними.
Второе свойство: нелинейность
Свойство линейности лежит в основе множества математических дисциплин, начиная от арифметики и заканчивая алгебраической топологией, не говоря уже о дифференциальном исчислении. Функция линейна, если ее значение представляет собой всего лишь взвешенную сумму ее аргументов (независимо от их значений). К примеру, функция 4х + 2у — z линейна, функция 4 sinx — 2y>-z — нет.
Использование линейных методов в математике и инженерном деле настолько важно, что сегодня большая часть профессиональной деятельности любого инженера и ученого заключается в поиске линейных функций, максимально точно описывающих те или иные явления природы. К сожалению, ни один из этих методов неприменим для изучения сложных адаптивных систем. По сути, одна из важнейших особенностей таких систем заключается в том, что их совокупное поведение намного сложнее суммы поведений отдельных частей, из чего, по определению, следует нелинейность.
Прекрасный пример, иллюстрирующий нелинейности в природе и сложных адаптивных системах, — взаимодействие «производитель — потребитель» и его частный случай — взаимодействие «хищник — жертва». Представьте себе лес, где живет D хищников (например, лис) и Р жертв (например, зайцев). Если вероятность того, что лиса поймает зайца, равна с, то ежедневно в лапы лис попадает с∙Р∙D зайцев. К примеру, если с = 0,5, D = 3 и Р = 10, то лисы поймают с ∙Р∙D = 0,5∙3∙10 = 15 зайцев. Если число лис и зайцев увеличится вчетверо, число пойманных зайцев возрастет еще больше: с∙Р∙D = 0,5∙12∙40 = 240. Как видите, этот результат нельзя получить простым сложением числа хищников и жертв.
Даже в сравнительно простой ситуации нелинейность может серьезно повлиять на агрегированную систему. Поэтому всегда говорят, что совокупное поведение сложной адаптивной системы сложнее, чем поведение ее составных частей.
* * *
МОДЕЛЬ ЛОТКИ — ВОЛЬТЕРРЫ
Уравнения, описывающие пример с лисами и зайцами, могут значительно усложняться. Исследователь Альфред Джеймс Лотка описал, как изменятся эти уравнения, если мы будем учитывать колебания численности хищников и жертв с течением времени. Допустим, что
Несмотря на загадочное происхождение отдельных своих элементов, математика не рождается в вакууме: ее создают люди. Некоторые из этих людей демонстрируют поразительную оригинальность и ясность ума. Именно им мы обязаны великими прорывными открытиями, именно их называем пионерами, первопроходцами, значимыми фигурами математики. Иэн Стюарт описывает открытия и раскрывает перед нами судьбы 25 величайших математиков в истории – от Архимеда до Уильяма Тёрстона. Каждый из этих потрясающих людей из разных уголков мира внес решающий вклад в развитие своей области математики.
В книге развита теория квантового оптоэлектронного генератора (ОЭГ). Предложена модель ОЭГ на базе полуклассических уравнений лазера. При анализе доказано, что главным источником шума в ОЭГ является спонтанный шум лазера, обусловленный квантовой природой. Приводятся схемы и экспериментальные результаты исследования малошумящего ОЭГ, предназначенного для применения в различных областях военно-космической сферы.
Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.
Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.
Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.
Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.