Том 18. Открытие без границ. Бесконечность в математике - [40]

Шрифт
Интервал

, то есть в виде р = 2n. Имеем

2q>2= р>2 (2n)>2 = 4n>2.

Упростив равенство, получим

q>2 = 2n>2.

Иными словами, q>2 четное, поэтому q также четное. Мы пришли к выводу, что и р, и g — четные числа, таким образом, числитель и знаменатель дроби p/q имеют общий множитель, что противоречит исходной гипотезе. Это означает, что √2 нельзя представить в виде частного двух целых.

Первые приближенные значения √2 содержали всего 4–5 знаков после запятой.

Достаточно точное значение, содержащее 65 знаков после запятой, записывается так:

√2 

1,41421356237309504880168872420969807856967187537694807317667973799.

С помощью современных компьютеров можно получить приближенное значение этого числа, содержащее несколько миллионов знаков после запятой.


Множества чисел

Определение различных множеств чисел сложно для понимания и требует знаний математики, выходящих за рамки этой книги. Существуют альтернативные определения, менее строгие, но более понятные, которые основываются на практическом применении множеств для решения уравнений. Отправной точкой являются так называемые натуральные числа. Множество натуральных чисел 1, 2, 3, … обозначается буквой

. Это множество записывается так:

= {0, 1, 2, 3, 4, 5, 6, 7….}

Некоторые авторы не включают 0 в множество натуральных чисел, что совершенно оправданно: это число появилось в результате длительных и глубоких размышлений, поэтому его сложно назвать натуральным, то есть естественным.

На множестве натуральных чисел решаются уравнения вида

х — 20.

Однако уравнения вида х + = 0 на этом множестве решить нельзя, так как отрицательные числа не являются натуральными. Если добавить к множеству натуральных чисел отрицательные числа и 0, получим целые числа. Множество целых чисел обозначается буквой

.

Аналогичным образом вводятся остальные множества чисел. Например, для решения уравнений вида

+ 3 = 0,

корнем которого является х = — 3/2, необходимо ввести множество рациональных чисел

. Для уравнений вида

х>2 20

следует ввести множество иррациональных чисел. Объединение этого множества и множества рациональных чисел является множеством вещественных чисел

.

Наконец, уравнение

х>2 + 2 = 0

не имеет вещественных решений, так как не существует такого вещественного числа,

которое было бы квадратным корнем отрицательного числа. Следующий шаг, позволяющий решить уравнения такого типа, — введение комплексных чисел, множество которых обозначается буквой

. Этот шаг также является последним, потому что было доказано: любое уравнение с комплексными коэффициентами всегда имеет решение (основная теорема алгебры).

Каждое из определенных нами множеств включает предыдущее (является его алгебраическим расширением):



Библиография

BOYER С.В. Historia de la matemática, Barcelona, Destino, 2009.

CANTOR G. Fundamentos para una teoría general de conjuntos, Madrid, Alianza Universidad, 1986.

COLLETTE J.P. Historia de la matemática, Madrid, Siglo XXI, 1985.

DEDEKIND R. ¿Qué son у para que sirven los números? Madrid, Alianza, 1998.

GUTHRIE Ch. Historía de la filosofía griega, Madrid, Gredos, 2009.

KLINE M. El pensamiento matematico de la Antigiiedad a nuestros días, Madrid, Alianza Universidad, 1992.

MANKIEWICZ R. Historia de las matemáticas, Barcelona, Paidós, 2005.

MONNOYEUR F. El infinito de los matemáticos, el infinito de los filósofos, Paris, Editions Belin, 1995.

MOSTERIN J. Los lógicos, Madrid, Espasa Calpe, 2000.

STEWART I. De aquí al infinito, Barcelona, Crítica (Grijalbo Mondadori), 1998.

ZELLINI P. Breve historia del infinitoy Madrid, Siruela, 2003.

* * *

>Научно-популярное издание

>Выходит в свет отдельными томами с 2014 года

>Мир математики

>Том 18

>Эирике Грасиан

>Открытие без границ.

>Бесконечность в математике

>РОССИЯ

>Издатель, учредитель, редакция:

>ООО «Де Агостини», Россия

>Юридический адрес: Россия, 105066,

>г. Москва, ул. Александра Лукьянова, д. 3, стр. 1

>Письма читателей по данному адресу не принимаются.

>Генеральный директор: Николаос Скилакис

>Главный редактор: Анастасия Жаркова

>Выпускающий редактор: Людмила Виноградова

>Финансовый директор: Наталия Василенко

>Коммерческий директор: Александр Якутов

>Менеджер по маркетингу: Михаил Ткачук

>Менеджер по продукту: Яна Чухиль

>Для заказа пропущенных книг и по всем вопросам, касающимся информации о коллекции, заходите на сайт >www.deagostini.ru>, по остальным вопросам обращайтесь по телефону бесплатной горячей линии в России:

> 8-800-200-02-01

>Телефон горячей линии для читателей Москвы:

> 8-495-660-02-02

>Адрес для писем читателей:

>Россия, 600001, г. Владимир, а/я 30,

>«Де Агостини», «Мир математики»

>Пожалуйста, указывайте в письмах свои контактные данные для обратной связи (телефон или e-mail).

>Распространение:

>ООО «Бурда Дистрибьюшен Сервисиз»

>УКРАИНА

>Издатель и учредитель:

>ООО «Де Агостини Паблишинг» Украина

>Юридический адрес: 01032, Украина,

>г. Киев, ул. Саксаганского, 119

>Генеральный директор: Екатерина Клименко

>Для заказа пропущенных книг и по всем вопросам, касающимся информации о коллекции, заходите на сайт >www.deagostini.ua>, по остальным вопросам обращайтесь по телефону бесплатной горячей линии в Украине:

>0-800-500-8-40

>Адрес для писем читателей


Еще от автора Энрике Грасиан
Том 3. Простые числа. Долгая  дорога к бесконечности

Поиск простых чисел — одна из самых парадоксальных проблем математики. Ученые пытались решить ее на протяжении нескольких тысячелетий, но, обрастая новыми версиями и гипотезами, эта загадка по-прежнему остается неразгаданной. Появление простых чисел не подчинено какой-либо системе: они возникают в ряду натуральных чисел самопроизвольно, игнорируя все попытки математиков выявить закономерности в их последовательности. Эта книга позволит читателю проследить эволюцию научных представлений с древнейших времен до наших дней и познакомит с самыми любопытными теориями поиска простых чисел.


Рекомендуем почитать
Как мы едим. Как противостоять вредной еде и научиться питаться правильно

Разговор о том, что в нашем питании что-то не так, – очень деликатная тема. Никто не хочет, чтобы его осуждали за выбор еды, именно поэтому не имеют успеха многие инициативы, связанные со здоровым питанием. Сегодня питание оказывает влияние на болезни и смертность гораздо сильнее, чем курение и алкоголь. Часто мы едим нездоровую еду в спешке и с трудом понимаем, как питаться правильно, что следует ограничить, а чего нужно потреблять больше. Стремление к идеальному питанию, поиск чудо-ингредиента, экстремальные диеты – за всем этим мы забываем о простой и хорошей еде.


Советский воинский долг и религия

Как коммунистическая и религиозная идеологии относятся к войне и советскому воинскому долгу? В чем вред религиозных предрассудков и суеверий для формирования морально-боевых качеств советских воинов? Почему воинский долг в нашей стране — это обязанность каждого советского человека защищать свой народ и его социалистические завоевания от империалистической агрессии? Почему у советских людей этот воинский долг становится их внутренней нравственной обязанностью, моральным побуждением к самоотверженной борьбе против врагов социалистической Родины? Автор убедительно отвечает на эти вопросы, использует интересный документальный материал.


Мир после нас. Как не дать планете погибнуть

Способны ли мы, живя в эпоху глобального потепления и глобализации, политических и экономических кризисов, представить, какое будущее нас ждет уже очень скоро? Майя Гёпель, доктор экономических наук и общественный деятель, в своей книге касается болевых точек человеческой цивилизации начала XXI века – массового вымирания, сверхпотребления, пропасти между богатыми и бедными, последствий прогресса в науке и технике. Она объясняет правила, по которым развивается современная экономическая теория от Адама Смита до Тома Пикетти и рассказывает, как мы можем избежать катастрофы и изменить мир в лучшую сторону, чтобы нашим детям и внукам не пришлось платить за наши ошибки слишком высокую цену.


Клеопатра

Последняя египетская царица Клеопатра считается одной из самых прекрасных, порочных и загадочных женщин в мировой истории. Её противоречивый образ, документальные свидетельства о котором скудны и недостоверны, многие века будоражит умы учёных и людей творчества. Коварная обольстительница и интриганка, с лёгкостью соблазнявшая римских императоров и военачальников, безумная мегера, ради развлечения обрекавшая рабов на пытки и смерть, мудрая и справедливая правительница, заботившаяся о благе своих подданных, благородная гордячка, которая предпочла смерть позору, — кем же она была на самом деле? Специалист по истории мировой культуры Люси Хьюз-Хэллетт предпринимает глубокое историческое и культурологическое исследование вопроса, не только раскрывая подлинный облик знаменитой египетской царицы, но и наглядно демонстрируя, как её образ менялся в сознании человечества с течением времени, изменением представлений о женской красоте и появлением новых видов искусства.


Малый ледниковый период. Как климат изменил историю, 1300–1850

Представьте, что в Англии растет виноград, а доплыть до Гренландии и даже Америки можно на нехитром драккаре викингов. Несколько веков назад это было реальностью, однако затем в Европе – и в нашей стране в том числе – стало намного холоднее. Людям пришлось учиться выживать в новую эпоху, вошедшую в историю как малый ледниковый период. И, надо сказать, люди весьма преуспели в этом – а тяжелые погодные условия оказались одновременно и злом и благом: они вынуждали изобретать новые технологии, осваивать материки, совершенствовать науку.


Возбуждённые: таинственная история эндокринологии. Властные гормоны, которые контролируют всю нашу жизнь (и даже больше)

Перепады настроения, метаболизм, поведение, сон, иммунная система, половое созревание и секс – это лишь некоторые из вещей, которые контролируются с помощью гормонов. Вооруженный дозой остроумия и любопытства, медицинский журналист Рэнди Хаттер Эпштейн отправляет нас в полное интриг путешествие по необычайно захватывающей истории этих сильнодействующих химикатов – от промозглого подвала девятнадцатого века, заполненного мозгами, до фешенебельной гормональной клиники двадцать первого века в Лос-Анджелесе.