Том 18. Открытие без границ. Бесконечность в математике - [19]
Определив таким образом уровень вина в бочке, трактирщик узнавал, сколько его осталось. Результатом размышлений Кеплера стал вышедший в 1615 году трактат под названием «Новая стереометрия винных бочек». Для решения задачи Кеплер использовал метод неделимых, разработанный Архимедом. Можно сказать, что из задачи об объеме бочки вина впоследствии родился анализ бесконечно малых. Тем не менее следует отметить, что труды Кеплера в этой области носили скорее практический, чем теоретический характер, и в этом смысле их можно считать отчасти неполными. Например, для вычисления площади круга он рассматривал сумму площадей бесконечного числа треугольников, вершины которых совпадали с центром круга, а основания располагались на окружности. Аналогично для вычисления объема сферы он рассчитывал сумму объемов конусов, вершины которых совпадали с центром сферы, а основания находились на ее поверхности. С помощью этого метода Кеплер пришел к выводу, что объем сферы равен одной трети произведения ее радиуса на площадь поверхности. Корректность всех этих операций Кеплер обосновывал принципом непрерывности, который при использовании его метода вычисления объемов следовало принять за истину.
* * *
БОЧКИ КЕПЛЕРА
Задача о бочках, рассмотренная Кеплером, принадлежит к классическим задачам, решаемым с помощью интегрального исчисления. Общим случаем этой задачи является вычисление объема жидкости, заключенной в сосуде определенной формы. Когда цистерна с бензином приезжает на автозаправку, оператор обычно опускает в нее длинный металлический стержень для измерения уровня жидкости в емкости. Очевидно, что отметки на этом стержне должны быть нанесены в зависимости от формы цистерны.
Как правило, она имеет форму цилиндра, основания которого являются полусферами или параболоидами вращения. В некоторых аэропортах можно встретить цистерны такой же формы с керосином.
Галилео Галилей (1564–1642) совершил революцию во многих областях науки. Мы не будем рассказывать ни о его творчестве, ни о том, какое влияние оно оказало на науку в целом, — рассмотрим вкратце его размышления о бесконечности.
Во-первых, Галилей рассматривал движение как процесс, происходящий без пауз, то есть делал выбор в пользу непрерывного, а не дискретного, зная, что занимает рискованную позицию, так как это автоматически означало принятие перехода от потенциальной к актуальной бесконечности. Для этого задачи, связанные с движением, следует рассматривать с геометрической точки зрения. Графическое изображение движения с переменной скоростью может выглядеть, например, следующим образом.
Портрет Галилео Галилея кисти фламандского художника Юстуса Сустерманса (1636) и график, описывающий свободное падение тел.
На горизонтальной оси откладывается время, на вертикальной — скорость.
Неравномерное движение описывается, например, уравнением v = 2t. Это означает, что с течением времени скорость возрастает: по прошествии одной секунды она равна 2, по прошествии двух секунд — 4 и т. д. Если в треугольнике АВС сторона АВ представляет пройденное время, сторона ВС — скорость, то пройденный путь будет равняться площади треугольника АВС. Галилея интересовало применение этого метода к более сложным разновидностям движения, например по параболической траектории, при этом неизбежно требовалось рассматривать кривые линии и площади фигур, ограниченных ими. В своих расчетах он использовал методы, схожие с методами Кеплера. Однако, как вы увидите чуть позже, его ученик Кавальери первым сформулировал рациональный метод для вычисления площадей подобных фигур.
Как мы уже говорили, Галилей неизбежно должен был столкнуться с парадоксами бесконечности и изучить ее природу. Именно так он пришел к парадоксу, который не смог разрешить. С формальной точки зрения эта задача даже не была парадоксом, но она содержала, как вы убедитесь чуть позже, возможное математическое определение бесконечности.
Эта задача-парадокс, которая впервые упоминается в диалогах Галилея в 1638 году, звучит так.
Рассмотрим в качестве исходного множества ряд чисел:
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10….
Далее запишем ряд чисел, которые являются их квадратами:
0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100….
Очевидно, что оба этих множества бесконечны в том смысле, что мы можем неограниченно добавлять к ним все новые и новые числа. Кроме того, Галилей заметил, что каждому элементу первого множества соответствует один из элементов второго, но, с другой стороны, кажется очевидным, что в первом множестве больше чисел, чем во втором. Вопрос, который поставил Галилей, заключается в том, какая бесконечность больше, первая или вторая, что ведет к кажущемуся парадоксу. Он полагал, что либо в чем-то ошибался, либо сравнения, основанные на понятиях «больше», «меньше» и «равно», неприменимы, когда речь идет о бесконечности.
В этом смысле он был прав, поскольку, как три столетия спустя доказал Георг Кантор, «арифметика бесконечного отлична от арифметики конечного».
Бонавентура Кавальери (1598–1647), иезуит и преподаватель математики в Болонье, был одним из учеников Галилея и больше всего интересовался вычислениями площадей и объемов. В 1635 году он опубликовал трактат на эту тему, озаглавленный «Геометрия, развитая новым способом при помощи неделимых непрерывного».
Поиск простых чисел — одна из самых парадоксальных проблем математики. Ученые пытались решить ее на протяжении нескольких тысячелетий, но, обрастая новыми версиями и гипотезами, эта загадка по-прежнему остается неразгаданной. Появление простых чисел не подчинено какой-либо системе: они возникают в ряду натуральных чисел самопроизвольно, игнорируя все попытки математиков выявить закономерности в их последовательности. Эта книга позволит читателю проследить эволюцию научных представлений с древнейших времен до наших дней и познакомит с самыми любопытными теориями поиска простых чисел.
Оказалось, достаточно всего одного поколения медиков, чтобы полностью изменить взгляд на генетические заболевания. Когда-то они воспринимались как удар судьбы, а сейчас во многих случаях с ними можно справиться. Некоторые из них почти исчезли, как, например, талассемия, отступившая на Кипре благодаря определенным политическим мерам, или болезнь Тея–Сакса, все менее распространенная у евреев-ашкеназов. Случаи заболевания муковисцидозом также сократились. Генетические заболевания похожи на родовое проклятие, то появляющееся, то исчезающее от поколения к поколению.
Книга Рюди Вестендорпа, профессора геронтологии Лейденского университета и директора Лейденской академии жизненной активности и старения, анализирует процесс старения и его причины в широком аспекте современных научных знаний. Чему мы можем научиться от людей, которые оставались здоровыми всю свою исключительно долгую жизнь? Помогут ли нам ограничения в пище или гормоны, витамины и минеральные вещества? Как сохранить свои жизненные силы, несмотря на лишения и болезни? Автор систематизирует факторы, влияющие на постоянно растущую продолжительность жизни людей нашего времени. В книге подробно обсуждаются социальные и политические последствия этого жизненного взрыва.
Если вы читали о динозаврах в детстве, смотрели «Мир юрского периода» и теперь думаете, что все о них знаете, – в этой книге вас ждет много сюрпризов. Начиная c описания мегалозавра в XIX в. и заканчивая открытиями 2017 г., ученые Даррен Нэйш и Пол Барретт рассказывают о том, что сегодня известно палеонтологам об этих животных, и о том, как компьютерное моделирование, томографы и другие новые технологии помогают ученым узнать еще больше. Перед вами развернется история длиной в 150 миллионов лет – от первых существ размером с кошку до тираннозавра и дальше к современным ястребам и колибри.
В книге в занимательной форме рассказывается об истории создания девяти известных литературных произведений: от жизненного факта, положенного в основу, до литературного воплощения.
Месяцы сочинительства и переделок написанного, мыканья по издательствам, кропотливой работы по продвижению собственной книги — так начиналась карьера бизнес-автора Екатерины Иноземцевой. Спустя три года в школе писательства, основанной Екатериной, обучались 1287 учеников, родилось 2709 статей, 1756 из которых опубликовали крупные СМИ. И главное: каждый из выпускников получил знания о том, как писательство помогает развить личный бренд. В этой книге — опыт автора в создании полезного и интересного контента, взаимодействия со СМИ и поиска вашего кода популярности.
В книге рассказывается, как родилась и развивалась физиология высшей нервной деятельности, какие непостижимые прежде тайны были раскрыты познанием за сто с лишним лет существования этой науки. И о том, как в результате проникновения физиологии в духовную, психическую деятельность человека, на стыке физиологии и математики родилась новая наука — кибернетика.