Том 12. Числа - основа гармонии. Музыка и математика - [9]

Шрифт
Интервал

Различные системы нотации греческого происхождения оказались забыты с падением Римской империи. Лишь в середине IX века для записи григорианских песнопений в Европе появилась новая, невменная система, основанная на слоговой записи латинских стихов. Невмы были примитивными музыкальными символами, указывающими на ноту, соответствующую латинскому слогу. Тем самым с помощью невм приблизительно передавались особенности исполнения песни, но не определялась ни высота звуков, ни ритмический рисунок. Чтобы воспроизвести песню, исполнитель должен был заранее знать мелодию, а указания, записанные в невменной нотации, лишь помогали ему при ее исполнении. Для преодоления этих ограничений невмы дополнялись вспомогательными надписями и располагались на разной высоте. Высота указывалась четырьмя линиями, которые представляли собой прообраз современного нотного стана.

Примерно в середине XIII века на фоне падения авторитета церкви в европейском искусстве роль религии постепенно снижается, заменяясь светскими традициями. До этого музыкальная запись развивалась исключительно в религиозных кругах. Для записи же многоголосой народной музыки требовалась совершенно иная нотация.

В конце XIII — начале XIV века на свет появилась новая, более эффективная форма записи, которую описал француз Филипп де Витри (1291–1361) в трактате «Новое искусство». В этой книге подробно описывается способ записи ритмического рисунка, возникший в результате необходимости графической записи новой многоголосной музыки, в которой требовалось точно указывать звучание различных голосов.

* * *

ПЕСНЬ О СКОРОТЕЧНОСТИ ЖИЗНИ

Эпитафия Сейкилоса записана на греческом надгробии, которое находится близ города Айдын на территории современной Турции. Полностью эпитафия звучит так: «Я надгробный камень, Сейкилос воздвиг меня здесь в знак его вечной памяти». Далее следует текст музыкального произведения, над которым записан ряд знаков и символов. В переводе на современный греческий язык эпитафия выглядит так:



Текст песни можно перевести следующим образом:

Сверкай, пока живешь,

и не страдай.

Жизнь коротка,

и время возьмет свое.

В современной музыкальной нотации мелодия записывается следующим образом:



СЛОГИ И МЕЛИЗМЫ

В Европе начала XIII века музыка записывалась в виде невм, расположенных поверх четырех параллельных линий. Высота звуков указывалась с помощью музыкальных ключей.



Прекрасный пример сложности невменной нотации — финская книга песнопений Graduate Aboense XIII–XIV веков.


Песни, в которых каждому слогу соответствует одна нота, принадлежат к силлабическому стилю, в отличие от мелизматических, в которых на один слог приходится несколько нот. В невменной нотации восходящая последовательность звуков записывалась в виде близко расположенных квадратов, которые читались снизу вверх. Нисходящий звуковой ряд отображался невмами в форме ромбов, которые читались слева направо. Например, существовало четыре варианта записи слога, пропеваемого тремя нотами:



В поздней невменной нотации использовались символы, которые кажутся нам знакомыми, что ясно указывает на источник происхождения современной музыкальной нотации:



* * *

Перфектум и имперфектум

Книга «Новое искусство» стала революционной во многих смыслах. В ней излагались идеи и предположения, ранее высказываемые другими музыкантами того времени. До появления этой книги в церковной музыке отдавалось предпочтение ритмическому делению на три части, так как число три ассоциировалось со Святой Троицей и считалось совершенным.

В книге Филиппа де Витри была заложена основа музыкальной нотации, с помощью которой можно было записать сложные композиции, сочетающие ритмическое деление на две и три части. Кроме того, предлагаемая нотация устанавливала соотношения между нотами. Французский музыкант и поэт нашел поистине гениальное решение: в придуманной им форме записи ритмическое деление на две и три части записывалось с помощью одних и тех же графем, или нот. В основе его метода лежали три соотношения. Он также создал новую ноту — миниму в дополнение к уже известным в то время лонге, бревису и семибревису. Система де Витри включала три соотношения между нотами:

— модус: соотношение лонги и бревиса;

— темпус: соотношение бревиса и семибревиса;

— пролация: соотношение семибревиса и минимы.

Модус и темпус, в свою очередь, могут быть:

— трехдольными, или «совершенными»;

— двухдольными, или «несовершенными».

Пролация также имела две разновидности:

— малая (при делении на две части);

— большая (при делении на три части).

В следующей таблице приведены соотношения длительностей звуков и соответствующие соотношения между различными фигурами (нотами):



Стоит указать, что деление на две и три части характерно не только для долей, но и для более крупных ритмических групп. Например, такт может состоять из двух или трех долей и называться соответственно двухдольным или трехдольным.

Такт — это понятие, созданное с целью упростить запись ритмов и чтение музыкальной нотации. Такты подчиняются общему принципу: они делят музыкальную композицию на строго равные части.

Такты начинаются с наиболее сильной доли, за которой следует еще одна или несколько более слабых долей. Например, двухдольный такт звучит как РАЗ-два, РАЗ-два, трехдольный — РАЗ-два-три, РАЗ-два-три. В современной нотации размеры тактов обозначаются дробями вида


Рекомендуем почитать
Флатландия. Сферландия

Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.


Стратегии решения математических задач

Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.


Вначале была аксиома. Гильберт. Основания математики

Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.


Симпсоны и их математические секреты

Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.


Истина и красота: Всемирная история симметрии

На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.


Простая одержимость: Бернхард Риман и величайшая нерешенная проблема в математике

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике.


Золотое сечение. Математический язык красоты

Можно ли выразить красоту с помощью формул и уравнений? Существует ли в мире единый стандарт прекрасного? Возможно ли измерить гармонию с помощью циркуля и линейки? Математика дает на все эти вопросы утвердительный ответ. Золотое сечение — ключ к пониманию секретов совершенства в природе и искусстве. Именно соблюдение «божественной пропорции» помогает художникам достигать эстетического идеала. Книга «Золотое сечение. Математический язык красоты» открывает серию «Мир математики» — уникальный проект, позволяющий читателю прикоснуться к тайнам этой удивительной науки.


Том 20. Творчество  в  математике. По каким правилам ведутся игры разума

В чем состоит загадка творчества? Существуют ли правила созидания? Действительно ли решение сложной задачи можно найти только в моменты удивительного озарения? Этими вопросами, наверное, задавался каждый из нас. Цель этой книги — рассказать о правилах творчества, его свойствах и доказать, что творчество доступно многим. Мы творим, когда мы размышляем, когда задаемся вопросами о жизни. Вот почему в основе математического творчества лежит умение задавать правильные вопросы и находить на них ответы.


Том 16. Обман чувств. Наука о перспективе

Физика, астрономия, экономика и другие точные науки основаны на математике — это понятно всем. Но взаимосвязь математики и творчества не столь очевидна. А ведь она куда глубже и обширнее, чем думают многие из нас. Математика и творчество развивались параллельно друг другу на протяжении веков. (Например, открытие математической перспективы в эпоху Возрождения привело к перевороту в живописи.) Эта книга поможет читателю посмотреть на некоторые шедевры живописи и архитектуры «математическим взглядом» и попробовать понять замысел их создателей.


Секреты числа Пи. Почему неразрешима задача о квадратуре круга

Число π, пожалуй, самое удивительное и парадоксальное в мире математики. Несмотря на то что ему посвящено множество книг, оно по праву считается самым изученным и сказать о нем что-то новое довольно сложно, оно по-прежнему притягивает пытливые умы исследователей. Для людей, далеких от математики, число π окружено множеством загадок. Знаете ли вы, для чего ученые считают десятичные знаки числа π? Зачем нам необходим перечень первого миллиарда знаков π? Правда ли, что науке известно все о числе π и его знаках? На эти и многие другие вопросы поможет найти ответ данная книга.