Теория струн и скрытые измерения Вселенной - [26]
Несмотря на то что подход, который я и мои коллеги взяли на вооружение в начале 1970-х, не был чем-то совершенно новым, мы попытались взглянуть на него с совершенно иной точки зрения. Так, для Морри дифференциальные уравнения в частных производных имели фундаментальное значение сами по себе и представляли скорее подлежащее изучению прекрасное творение разума, нежели средство для достижения какой-либо цели. Интересуясь также и геометрией, он рассматривал ее в основном как источник интересных дифференциальных уравнений, точно так же он смотрел и на многие области физики. И хотя мы оба восхищались этими уравнениями, наши цели были практически противоположны — вместо того, чтобы пытаться искать новые нелинейные уравнения в геометрических задачах, я собирался использовать эти уравнения для решения геометрических задач, до этого считавшихся неразрешимыми.
Вплоть до 1970-х годов геометры всячески избегали нелинейных уравнений, впрочем, я и мои современники не испытывали перед ними сильного страха. Мы поставили себе целью узнать, как следует обращаться с подобными уравнениями, чтобы затем использовать их в своей повседневной работе. Рискуя показаться нескромным, я все же скажу, что эта стратегия не только оправдала себя, но и вышла далеко за рамки первоначальных задач. На протяжении многих лет, используя методы геометрического анализа, мы занимались решением важнейших задач, не разрешенных до этого каким-либо другим способом. «Смесь геометрии с теорией [дифференциальных уравнений в частных производных], — отметил математик Имперского колледжа Лондона Саймон Дональдсон, — задает тон во всей обширной области, касающейся данного предмета, на протяжении последней четверти столетия».[26]
Итак, чем же занимается геометрический анализ? Рассмотрим сначала простейший пример. Предположим, что вы нарисовали окружность и сравнили ее с произвольной петлей или замкнутой кривой, которая имеет несколько меньшую длину, — в роли подобной петли может выступать обычная резинка, небрежно брошенная на письменный стол. Эти две кривые выглядят совершенно различными и, естественно, имеют разную форму. Однако можно представить, как резинка деформируется (или растягивается) и превращается в окружность — такую же, как та, что нарисована на бумаге.
Существует много способов сделать это. Вопрос в том, какой из них лучше? Иными словами, существует ли такой способ, который будет безотказно работать во всех возможных случаях и никогда не приведет к возникновению узлов или перекручиваний? Можно ли найти этот универсальный способ, не прибегая к методу проб и ошибок? Узнать все это можно в рамках геометрического анализа, который позволяет, исходя из геометрии произвольной кривой (в нашем случае резинки), сделать выводы о способах ее преобразования в окружность. Этот процесс не должен быть произвольным. Строго определенный или — еще лучше — канонический путь превращения нашей кривой в окружность однозначно определяется ее геометрией. Для математиков слово канонический является синонимом слова «единственно верный», что, впрочем, иногда звучит излишне строго. Представим себе, что мы хотели бы попасть с Северного полюса на Южный. Существует бесконечно много меридианов, соединяющих эти точки. Каждый из меридианов будет кратчайшим путем, но ни один из них не будет единственно верным; вместо этого мы называем такие пути каноническими.
Те же вопросы остаются актуальными и в случае более высоких размерностей. Вместо окружности и резинки теперь можно сравнить сферу или полностью надутый баскетбольный мяч со сдутым баскетбольным мячом с разнообразными углублениями и выступами. Задача состоит в том, чтобы превратить сдутый баскетбольный мяч в идеальную сферу. Конечно, для этого лучше всего использовать насос, но можно и математику. Математическим аналогом насоса в геометрическом анализе является дифференциальное уравнение, служащее движущим механизмом процесса преобразования формы путем крошечных непрерывных изменений. Стоит только определиться с начальной ситуацией (геометрией сдутого мяча) и найти подходящее дифференциальное уравнение — и задача будет решена.
Самым тяжелым во всем этом является нахождение подходящего для данного случая дифференциального уравнения, равно как и выяснение, существует ли в принципе уравнение, подходящее для данной задачи. К счастью, Морри и другие математики создали немало инструментов для анализа дифференциальных уравнений, при помощи которых можно узнать, имеет ли решение задача, с которой мы столкнулись, и, если да, то является ли это решение единственным.
Описанный выше тип задач принадлежит к категории задач, известных как геометрический поток. Подобные задачи в последнее время привлекли достаточно большое внимание по причине их использования в доказательстве сформулированной сто лет назад гипотезы Пуанкаре, о которой еще пойдет речь в этой главе. При этом, однако, необходимо отметить, что задачи данного типа составляют лишь часть круга исследований геометрического анализа, который охватывает гораздо большую область возможных применений.
Воспоминания американского астронавта Майкла Маллейна посвящены одной из наиболее ярких и драматичных страниц покорения космоса – программе многоразовых полетов Space Shuttle. Опередившая время и не использованная даже на четверть своих возможностей система оказалась и самым опасным среди всех пилотируемых средств в истории космонавтики. За 30 лет было совершено 135 полетов. Два корабля из пяти построенных погибли, унеся 14 жизней. Как такое могло случиться? Почему великие научно-технические достижения несли не только победы, но и поражения? Маллейн подробно описывает период подготовки и первое десятилетие эксплуатации шаттлов.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
Книга «Большой космический клуб» рассчитана на широкий круг читателей и рассказывает об образовании, становлении и развитии неформальной группы стран и организаций, которые смогли запустить национальные спутники на собственных ракетах-носителях с национальных космодромов.
Автор книги Анатолий Викторович Брыков — участник Великой Отечественной войны, лауреат Ленинской премии, заслуженный деятель науки и техники РСФСР, почетный академик и действительный член Академии космонавтики им. К. Э. Циолковского, доктор технических наук, профессор, ведущий научный сотрудник 4 Центрального научно-исследовательского института Министерства обороны Российской Федерации.С 1949 года, после окончания Московского механического института, работал в одном из ракетных научно-исследовательских институтов Академии артиллерийских наук в так называемой группе Тихонравова.
Исторический триллер.Россия в 9 веке разбита на мелкие княжества, которые враждуют между собой.Князю Гостомыслу предсказывают, что он пригласит править к себе в Новгород — врага своего. Кто он? Сбудутся ли предсказания?А пока русскую землю раздирают на части, то норманны, то варяги. Пришло время выбрать одного правителя на Руси. Местный князь Вадим и его жена (колдунья) — тоже имеют амбициозные планы. И они хотят силой завоевать все славянские княжества. Приходится Гостомыслу просить помощи у своего внука — финского принца Рюрика.
Исторический триллер.Сейчас уже мало кто верит в колдовство и сверхъестественные силы. И уж, конечно, мало найдётся людей, которые знают, что такое честь и рыцарское достоинство. А в девятом веке новой эры эти понятия были, почти обыденными.В этой книге рассказывается о том, как в седой древности русские князья Игорь и Олег создавали новое государство Киевскую Русь. Преодолев огонь сражений, колдовские силы и коварство врагов, они добились своего, и заветная мечта отца князя Игоря Рюрика воплотилась в жизнь.