Теория струн и скрытые измерения Вселенной - [21]

Шрифт
Интервал

Попав в Калифорнию в двадцать лет и видя все многообразие математических дисциплин, открывающееся передо мной, я плохо представлял, в каком направлении мне двигаться. Сначала я склонился к операторной алгебре, одной из наиболее абстрактных областей математики, поскольку у меня было смутное чувство, что качество теории определяется степенью ее абстрактности.

Хотя в Беркли процветало множество математических дисциплин, в то время он был прежде всего одним из мировых центров — если не единственным мировым центром — развития геометрии, и присутствие в нем многих блестящих ученых, таких как Черн, начало оказывать на меня неумолимое влияние. Все это вместе с растущим пониманием того, что геометрия представляет собой огромную и богатую область, изобилующую многими возможностями, постепенно привело меня в их сообщество.

При этом я продолжал изучать столько разных предметов, сколько мог, посещая сразу шесть учебных курсов, изучая попутно материалы из области геометрии, топологии, дифференциальных уравнений, групп Ли, комбинаторики, теории чисел и теории вероятностей. Эти занятия удерживали меня в аудитории с 8:00 до 17:00 ежедневно, едва оставляя время на обед. Оставшееся время я проводил в математической библиотеке, ставшей для меня вторым домом. Я читал почти каждую книгу, которая попадала мне в руки. Поскольку в более молодом возрасте я не мог позволить себе покупать книги, то теперь, прохаживаясь между стеллажами, я ощущал себя ребенком, попавшим в магазин сладостей. По окончании обязательных занятий я часто оставался в библиотеке вплоть до момента закрытия, заработав себе репутацию человека, постоянно уходящего из читального зала последним. Конфуций как-то сказал: «Однажды я провел в размышлениях целый день без еды и целую ночь без сна, но я ничего не добился. Было бы лучше посвятить то время учению». И хотя тогда мне эта цитата еще не была знакома, я, тем не менее, полностью следовал именно этому образу мыслей.

Так почему же из всех областей математики именно геометрия заняла центральное место в моих мыслях и мечтах? Прежде всего потому, что она произвела на меня впечатление математической дисциплины, находящейся ближе всего к природе и, следовательно, ближе всего к ответам на те вопросы, которые заботили меня более всего.

Кроме того, я нахожу полезным, сталкиваясь со сложными понятиями, представлять себе их наглядные изображения, что весьма редко удается сделать во многих трудных для понимания областях алгебры и теории чисел. Плюс ко всему, геометрией в Беркли занималась совершенно потрясающая группа людей, в числе которых были профессора Черн и Чарльз Морри и некоторые из более молодых представителей факультета, такие как Блейн Лоусон, а также аспиранты, такие как будущий обладатель медали Филдса Уильям Тёрстон, зародившие во мне желание приобщиться к их азарту и надежду стать одним из них.

Наконец, существовало и гораздо большее сообщество людей, не только из других университетских кампусов, но и со всего мира, и — как мы уже успели убедиться в этой главе, живших на протяжении всей человеческой истории, — которые прокладывали путь в ту плодородную область, в которую мне посчастливилось войти. Это что-то сродни ньютоновской сентенции о том, что ему посчастливилось «стоять на плечах гигантов», хотя Ньютон и сам по себе был одним из таких гигантов, на плечах которого мы сейчас стоим.

Примерно в то же время, когда я впервые начал размышлять об общей теории относительности Эйнштейна и кривизне абсолютно пустого пространства, мой руководитель Черн вернулся из поездки на восточное побережье весьма взбудораженным, поскольку он только что услышал от известного принстонского математика Андре Вейля о том, что так называемая гипотеза Римана, проблема, сформулированная еще столетие назад, возможно, скоро будет решена. Эта гипотеза относится к вопросу о распределении простых чисел, которое, как казалось до этого, не подчиняется никакому закону. Однако Риман предположил, что на самом деле частота появления простых чисел описывается сложной функцией, так называемой дзета-функцией Римана. В частности, он высказал предположение, что частота появлений простых чисел соответствует расположению нулей соответствующей дзета-функции. Утверждение Римана подтверждено для более чем миллиарда нулей дзета-функции, но строгого доказательства до сих пор так и не было получено.

Впрочем, несмотря на то, что эта проблема является одной из важнейших в математике — и если бы мне посчастливилось ее решить, это не только принесло бы мне бесчисленные предложения работы, но и прославило бы мое имя на всю оставшуюся жизнь, — я совсем не испытывал особого энтузиазма от предложения Черна. Гипотеза Римана не волновала меня, а для того чтобы решить столь грандиозную задачу, поставившую в тупик так много талантливых ученых и требующую многих лет на ее завершение, необходимо по крайней мере быть ею взволнованным. Отсутствие у меня страсти к решению проблемы, естественно, заметно уменьшало мои шансы на ее решение, поэтому если бы я работал над доказательством гипотезы Римана, то вполне возможно, что и спустя много лет мне нечего было бы сказать по этому вопросу. Помимо этого, мне слишком нравятся наглядные изображения. Мне нравятся математические структуры, на которые можно каким-либо образом взглянуть, именно за это я и люблю геометрию. Да и вдобавок мне уже были известны некоторые области геометрии, в которых я мог достигнуть определенных результатов — хотя, возможно, и не столь впечатляющих.


Рекомендуем почитать
Затмение Луны и Солнца

Серия научно-популяризаторских рассказов в художественной форме об астрономических событиях.


Верхом на ракете. Возмутительные истории астронавта шаттла

Воспоминания американского астронавта Майкла Маллейна посвящены одной из наиболее ярких и драматичных страниц покорения космоса – программе многоразовых полетов Space Shuttle. Опередившая время и не использованная даже на четверть своих возможностей система оказалась и самым опасным среди всех пилотируемых средств в истории космонавтики. За 30 лет было совершено 135 полетов. Два корабля из пяти построенных погибли, унеся 14 жизней. Как такое могло случиться? Почему великие научно-технические достижения несли не только победы, но и поражения? Маллейн подробно описывает период подготовки и первое десятилетие эксплуатации шаттлов.


Есть ли Бог

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Сферы света [Звезды]

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Большой космический клуб. Часть 1

Книга «Большой космический клуб» рассчитана на широкий круг читателей и рассказывает об образовании, становлении и развитии неформальной группы стран и организаций, которые смогли запустить национальные спутники на собственных ракетах-носителях с национальных космодромов.


Пятьдесят лет в космической баллистике

Автор книги Анатолий Викторович Брыков — участник Великой Отечественной войны, лауреат Ленинской премии, заслуженный деятель науки и техники РСФСР, почетный академик и действительный член Академии космонавтики им. К. Э. Циолковского, доктор технических наук, профессор, ведущий научный сотрудник 4 Центрального научно-исследовательского института Министерства обороны Российской Федерации.С 1949 года, после окончания Московского механического института, работал в одном из ракетных научно-исследовательских институтов Академии артиллерийских наук в так называемой группе Тихонравова.


Рюрик

Исторический триллер.Россия в 9 веке разбита на мелкие княжества, которые враждуют между собой.Князю Гостомыслу предсказывают, что он пригласит править к себе в Новгород — врага своего. Кто он? Сбудутся ли предсказания?А пока русскую землю раздирают на части, то норманны, то варяги. Пришло время выбрать одного правителя на Руси. Местный князь Вадим и его жена (колдунья) — тоже имеют амбициозные планы. И они хотят силой завоевать все славянские княжества. Приходится Гостомыслу просить помощи у своего внука — финского принца Рюрика.


Игорь

Исторический триллер.Сейчас уже мало кто верит в колдовство и сверхъестественные силы. И уж, конечно, мало найдётся людей, которые знают, что такое честь и рыцарское достоинство. А в девятом веке новой эры эти понятия были, почти обыденными.В этой книге рассказывается о том, как в седой древности русские князья Игорь и Олег создавали новое государство Киевскую Русь. Преодолев огонь сражений, колдовские силы и коварство врагов, они добились своего, и заветная мечта отца князя Игоря Рюрика воплотилась в жизнь.