Теория относительности — мистификация ХХ века - [5]

Шрифт
Интервал



Теперь, чтобы продолжить наблюдение свет от источника И по-прежнему, частоту вращения модулятора следует увеличить согласно условию (6), но в этом случае вновь нарушится наблюдение источника И'.

Такими должны быть экспериментальные результаты по измерению скорости света при взаимном движении источника и приемника в случае подчинения движения света классическому закону сложения скоростей.

Интересен смысл формул (4) и (8). Звено λ в системе наблюдателя остается таким же, как и в системе излучателя. Но при измерении его длины, так же как и длины аналогичного ему звена λ' от неподвижного источника, по времени прохождения мимо наблюдателя звено λ становится «длиннее», когда источник удаляется, или «короче», в случае приближения, равного ему звена λ'!

Прямое измерение линейных размеров проводится методом наложения эталона длины на протяженное тело. В случае измерения длины движущегося объекта (потока света, поезда) вступает в силу косвенный способ — вычисление длины по времени прохождения тела при известной скорости.

Эффект изменения длины звена как следствие изменившейся величины скорости света является кажущимся, он вызван способом нашего измерения. В дальнейшем изложении термины изменения длины звена применяются с учетом данного замечания.

Для наглядности рассмотрим пример. Два поезда на параллельных путях движутся в одном направлении. В течение одной минуты мимо наблюдателя в первом поезде прошло 20 вагонов, а во втором 15. Это может быть результатом двух причин: разными скоростями поездов или различным типом вагонов. Предположим, что тип вагонов один и тот же, тогда наше наблюдение есть результат разной скорости поездов.

Сравнивая планируемые измерения с фактически проведенными наблюдениями и опытами, находим, что скорость света действительно подчиняется классическому закону сложения скоростей.

4. Астрономические наблюдения и лабораторные эксперименты, подтверждающие классический закон сложения скоростей для света

4.1. Наблюдения Олафа Рёмера

Природа облегчила нам проведение так необходимого эксперимента, предоставила модулированный источник света и движущуюся платформу.

В 1676 г. в Парижской обсерватории датский астроном О. Рёмер, наблюдая за планетой Юпитер и его спутниками, заметил, что время полного обращения спутника Ио вокруг Юпитера, определяемое по моменту выхода (или входа) спутника из тени Юпитера, периодически изменяется. Периодичность оказалась связанной с движением Земли по орбите вокруг Солнца [5, с. 414].

В момент максимального сближения Земли с Юпитером (рис. 4), в положении I, период Ио — Т>1 = 1,77 суток = 1,5·10>5 сек.



Рис. 4


При движении Земли к положению II период Т>1 начинает увеличиваться и достигает своего максимума T>2 в положении II, после чего уменьшается и становится опять равным Т>1 в положении III, т. е. Т>1 = Т>3. Но уменьшение здесь не заканчивается, а продолжается до положения IV, где период Т>4 приобретает минимальное значение. Затем происходит его увеличение до величины в первоначальном положении I. Максимальное приращение периода Ио ΔТ>2 = 15 с, примерно такое же и максимальное уменьшение — ΔТ>4 = 15с. Во всех остальных промежуточных положениях Земли на орбите изменения периода Ио пропорциональны составляющей скорости Земли относительно Юпитера по прямой Земля-Юпитер. Период увеличивается, если Земля удаляется от Юпитера, и уменьшается при приближении к Юпитеру. Так как угловая скорость обращения Юпитера вокруг Солнца много меньше угловой скорости Земли (год Юпитера равен почти 12 земным годам), то в течение года взаимное положение Земли и Юпитера меняется незначительно и не оказывает заметного влияния на описываемый эффект.

Сравнивая два наблюдения периодов Ио в точках I и III, О. Рёмер увидел, что периоды их равны, но начало периода в положении III опаздывает, по его измерениям, на 22 мин по сравнению со случаем, если бы продолжительность периодов не менялась в течение времени между наблюдениями. Астроном определил, что запаздывание начала периода Ио в точке III вызвано тем, что свет от спутника должен пройти до наблюдателя дополнительное расстояние, равное диаметру земной орбиты. Делением данного расстояния на время опоздания Рёмер впервые в мире вычислил скорость света.

Рассмотрим теперь периоды в положениях II и IV. Первый из них больше первоначального на 15 с, второй — на столько же меньше. Изменение длительности периодов показывает, что свет имеет разные величины своей скорости относительно наблюдателя в зависимости от условий регистрации.

Действительно, спутник Ио отражает свет в течение времени Т и образует в пространстве поток света протяженностью λ = сТ, где с — скорость света в системе Юпитера, Т — время обращения спутника Ио вокруг Юпитера. λ — это звено, которое состоит из двух частей: а — Ио находится в освещенном месте, б — имеется разрыв в потоке света, Ио в тени Юпитера, а Земля в нашем эксперименте — платформа.

В положении I Земля неподвижна относительно Юпитера по прямой Земля-Юпитер. Звено λ, преодолев расстояние от Юпитера до Земли, регистрируется наблюдателем на Земле в течение периода:


Еще от автора Владимир Ильич Секерин
Отцы водородной бомбы оказались отчимами

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Рекомендуем почитать
Мистер Томпкинс внутри самого себя

В книге, одним из авторов которой является известный американский физик Г. Гамов, в доступной и увлекательной форме рассказывается о достижениях на стыке физики и биологии. Данная книга рассчитана на учащихся старших классов и студентов начальных курсов университетов самых разных специальностей.


Магнетизм высокого напряжения. Максвелл. Электромагнитный синтез

Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.


Охотники за нейтрино. Захватывающая погоня за призрачной элементарной частицей

Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.


Ньютон. Закон всемирного тяготения. Самая притягательная сила природы

Исаак Ньютон возглавил научную революцию, которая в XVII веке охватила западный мир. Ее высшей точкой стала публикация в 1687 году «Математических начал натуральной философии». В этом труде Ньютон показал нам мир, управляемый тремя законами, которые отвечают за движение, и повсеместно действующей силой притяжения. Чтобы составить полное представление об этом уникальном ученом, к перечисленным фундаментальным открытиям необходимо добавить изобретение дифференциального и интегрального исчислений, а также формулировку основных законов оптики.


Элегантная Вселенная. Суперструны, скрытые размерности и поиски окончательной теории

Книга Брайана Грина «Элегантная Вселенная» — увлекательнейшее путешествие по современной физике, которая как никогда ранее близка к пониманию того, как устроена Вселенная. Квантовый мир и теория относительности Эйнштейна, гипотеза Калуцы — Клейна и дополнительные измерения, теория суперструн и браны, Большой взрыв и мультивселенные — вот далеко не полный перечень обсуждаемых вопросов.Используя ясные аналогии, автор переводит сложные идеи современной физики и математики в образы, понятные всем и каждому.


Климатическая наука: наблюдения и модели

Ричард МурКлиматическая наука: наблюдения и модели.21.01.2010Источник: Richard K. Moore, Gglobal ResearchClimate Science: Observations versus ModelsПеревод: Арвид Хоглунд, специально для сайта "Война и Мир".Теория парниковых газов якобы ответственных за катастрофическое глобальное потепление не согласуется с фактами и является политической спекуляцией на реальной науке. Рассматривается фактическая картина современного климата по доступным данным.