Теория относительности — мистификация ХХ века - [37]

Шрифт
Интервал

6. В. И. Секерин. Современная корпускулярная модель света. Сборник докладов Международной конференции «Ньютон и проблемы механики твердых и деформируемых тел», С.-Петербург. 22–27 марта 1993 г.

7. В. И. Секерин. Поперечный эффект Рёмера (Доплера) в классической физике. Текст доклада на 2-ой Международной конференции. Ленинград, сентябрь 1991 г. Сборник статей доложенных на Международном Конгрессе «Фундаментальные проблемы естествознания», Санкт-Петербург, 21–27 июня 1998 г. С.-П., Россия, 1999 г.

Литература

1. Чешев В.В. Проблема реальности в классической и современной физике. Томск, ТГУ, 1984

2. Эйнштейн. А. Собрание научных трудов. М., 1965.

3. Карякин Н.И., Быстров К.Н., Киреев П.С.. Краткий справочник по физике, М., 1962.

4.Логунов А.А. Релятивистская теория гравитации и новые представления о пространстве и времени. М.; Из-во МГУ, 1986г.

5. Годжаев Н.И. Оптика. М., 1977.

6. H.E.Ives and G.R.Stilwell, J.Opt.Soc.Am. 1938, v.28, № 7, p. 215-226.

7. W. Ritz, Ann.de chim. et phys., 13, 145, 1908.

8. W.de Sitter, Phys. Zs., 14, 429, 1913

9. Ландсберг Г.С. Оптика. М., 1976.

10. Кукаркин В.В., Паренаго П. П. Физические переменные звезды. М.-Л., 1937.

11. Струве О. Эволюция звезд. М., 1954.

12. Бонч-Бруевич А.И., Молчанов В.А. Новый оптический релятивистский опыт. Оптика и спектроскопия. Т. 1, вып. 2, 1956.

13. Фрум К., Эссен Л. Скорость cвета и радиоволн. М., 1973.

14. Spectroscopy Letters, US, 1969, t.2, 12, p. 361 — 367.

15. Макс Борн. Эйнштейновская теория относительности. М., 1973.

16. Бриллюэн Л. Новый взгляд на теорию относительности.М., 1972.

17. С.А.Базилевский, М.П.Варин. Ошибка Эйнштейна. Сб. работ. «Проблемы пространства и времени в современном естествознании». С.Петербург. 1991 г. (Приложение 1).

18. Гернек Ф. Альберт Эйнштейн. М., 1966.

19. Принцип относительности. Сб. работ. Атомиздат, М., 1973.

20. Мах Э. Механика. С.-П. 1909.

21. Фок. В.А. Теория пространства, времени и тяготения. М. 1961.

22. Ленин В. И. Полн. собр. соч., М. 1964

23. Зоммерфельд. Пути познания в физике. М., 1973.

24. Архив МГУ. Фонд 201. Опись 1. Ед. хранения 197, стр. 6.

25. Тимирязев А.К. Физика. Ч. 2, М. 1926.

26. Гарднер М. Теория относительности для миллионов. М., 1976.

27. Мигдал А.Б. Как рождаются физические теории. М., 1984.

28. Газета «Наука в Сибири» № 33, 28 августа 1986, Новосибирск.

29. B.C. Wallese. Scientific Ethics, US, 1985, 3, p.l.

30. В.Босс. Интуиция и математика. М.:КомКнига, 2007.

Приложение 1 [17]

д.т.н., проф. С. А. Базилевский, к.ф.-м.н. М. П. Варин

Ошибка Эйнштейна


С. А. Базилевский, М. П. Варин

Ошибка Эйнштейна. Сб. работ. «Проблемы пространства и времени в современном естествознании». С.Петербург. 1991 г.


В середине прошлого столетия обнаружились противоречия между двумя направлениями в физике: классическим и релятивистским. Первое направление сохраняло традиционную объективность подлинной науки о природе — независимость ее законов от человеческого мышления; второе направление проявило стремление подменить реальные факты теми впечатлениями, которые они производят на человеческие чувства. В процессе своего развития второе направление привело к коренной ломке представлений о пространстве, времени и веществе.

Кризис начался с электродинамики, основой которой с 1865 года стала группа уравнений Максвелла, обобщившая экспериментальные результаты Кулона и, главным образом, Фарадея. Электромагнитная теория Максвелла заимствовала от математики свою строгость и логичность, а от опыта — его достоверность, широкую возможность критики и объективность проверки.

Со временем обнаружилось, что при переходе к высоким скоростям, измеряемым десятками, сотнями и более километров в секунду, свойственным движению микрочастиц, формулы Максвелла дают весьма ощутимые отклонения от эксперимента. Теория явно требовала усовершенствования, доработки.

Однако наука, благодаря усилиям некоторых ученых, сошла с прямого пути и занялась поисками произвольных постулатов, способных подогнать новые факты к устаревшим гипотезам. Гносеологическое направление в науке, согласно которому чистому мышлению доступно познание действительности, берущее свое начало от Платона, получило во II половине XIX столетия дальнейшее развитие в трудах Маха, Пуанкаре, а позднее и Эйнштейна [1].


В прошлом веке была широко распространена гипотеза эфира, мировой всепроникающей среды, заполняющей все пространство. Эфир, как носитель света, должен обладать многими удивительными свойствами: с одной стороны, он должен быть чрезвычайно «тонким», невесомым, чтобы не препятствовать движению микрочастиц и небесных тел, с другой стороны, он должен быть невероятно «жестким», чтобы передавать поперечные волны света со скоростью в сотни тысяч километров в секунду. Возможная для него частота колебаний должна охватывать весь диапазон, практически от нуля до многих триллионов (10>18) в секунду. Но во второй половине XIX века трудами Сен-Венана, Релея и Столетова было выяснено, что подобные требования к веществу совершенно несовместимы.

Было сделано много попыток спасти гипотезу эфира за счет, усложнения его гипотетических свойств, но, как писал С. И. Вавилов, «Под натиском опытных данных концепция эфира стала столь громоздкой и неопределенной, что в пользу ее трудно аргументировать даже тем, что она дает довольно наглядный образ явлений. Как и во времена Ньютона, мы также мало знаем «что такое эфир», а пожалуй даже меньше, чем тогда» [2].


Еще от автора Владимир Ильич Секерин
Отцы водородной бомбы оказались отчимами

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Рекомендуем почитать
Мистер Томпкинс внутри самого себя

В книге, одним из авторов которой является известный американский физик Г. Гамов, в доступной и увлекательной форме рассказывается о достижениях на стыке физики и биологии. Данная книга рассчитана на учащихся старших классов и студентов начальных курсов университетов самых разных специальностей.


Магнетизм высокого напряжения. Максвелл. Электромагнитный синтез

Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.


Охотники за нейтрино. Захватывающая погоня за призрачной элементарной частицей

Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.


Ньютон. Закон всемирного тяготения. Самая притягательная сила природы

Исаак Ньютон возглавил научную революцию, которая в XVII веке охватила западный мир. Ее высшей точкой стала публикация в 1687 году «Математических начал натуральной философии». В этом труде Ньютон показал нам мир, управляемый тремя законами, которые отвечают за движение, и повсеместно действующей силой притяжения. Чтобы составить полное представление об этом уникальном ученом, к перечисленным фундаментальным открытиям необходимо добавить изобретение дифференциального и интегрального исчислений, а также формулировку основных законов оптики.


Элегантная Вселенная. Суперструны, скрытые размерности и поиски окончательной теории

Книга Брайана Грина «Элегантная Вселенная» — увлекательнейшее путешествие по современной физике, которая как никогда ранее близка к пониманию того, как устроена Вселенная. Квантовый мир и теория относительности Эйнштейна, гипотеза Калуцы — Клейна и дополнительные измерения, теория суперструн и браны, Большой взрыв и мультивселенные — вот далеко не полный перечень обсуждаемых вопросов.Используя ясные аналогии, автор переводит сложные идеи современной физики и математики в образы, понятные всем и каждому.


Климатическая наука: наблюдения и модели

Ричард МурКлиматическая наука: наблюдения и модели.21.01.2010Источник: Richard K. Moore, Gglobal ResearchClimate Science: Observations versus ModelsПеревод: Арвид Хоглунд, специально для сайта "Война и Мир".Теория парниковых газов якобы ответственных за катастрофическое глобальное потепление не согласуется с фактами и является политической спекуляцией на реальной науке. Рассматривается фактическая картина современного климата по доступным данным.