Теория катастроф - [33]
6. Если систему удается сразу, скачком, а не непрерывно, перевести из плохого устойчивого состояния достаточно близко к хорошему, то дальше она сама собой будет эволюционировать в сторону хорошего состояния.
С этими объективными законами функционирования нелинейных систем нельзя не считаться. Выше сформулированы лишь простейшие качественные выводы. Теория доставляет также количественные модели, но качественные выводы представляются более важными и в то же время более надежными: они мало зависят от деталей функционирования системы, устройство которой и численные параметры могут быть недостаточно известными.
Наполеон критиковал Лапласа за "попытку ввести в управление дух бесконечно малых". Математическая теория перестроек — это та часть современного анализа бесконечно малых, без которой сознательное управление сложными и плохо известными нелинейными системами практически невозможно.
Не требуется, однако, специальной математической теории, чтобы понять, что пренебрежение законами природы и общества (будь то закон тяготения, закон стоимости или необходимость обратной связи), падение компетентности специалистов и отсутствие личной ответственности за принимаемые решения приводит рано или поздно к катастрофе.
Задачи
К разделу 1
(здесь и далее переменная z — комплексная, х и у вещественные)
1. Найдите критические точки и критические значения отображений z → z>2, z → z>2 + εz.
2. Найдите критические точки и критические значения отображений (х, у) → (х>2 + ау, у>2 + bх)
3. Исследуйте бифуркации особых точек дифференциального уравнения х = -х>3 + х + а при изменении параметра а.
4. Исследуйте бифуркации особых точек в системе дифференциальных уравнений z = εz — z>2z + Az>3, где A — фиксированное комплексное число, а комплексное число ε обходит вокруг нуля,
5. Сколько имеется топологически различных вещественных многочленов пятой степени х>5 + ... с четырьмя различными вещественными критическими значениями? Два многочлена топологически одинаковы, если один можно превратить в другой непрерывными и сохраняющими ориентации заменами зависимой и независимой вещественных переменных.
6. Обозначим через а>n число типов многочленов х>n+1 +... с n различными критическими значениями (так что ответ в предыдущей задаче будет обозначаться а>4) и составим функцию р (t) = Σa>nt>n/n!. Докажите, что р (t) = sec t + tg t (так что a>n выражаются через числа Бернулли при нечетных n и через числа Эйлера — при четных).
7. Рассмотрим в пространстве многочленов х>5 + ... область, образованную многочленами с четырьмя различными вещественными критическими значениями. Сколько компонент связности имеет эта область?
8. Предположим, что второй дифференциал гладкой функции двух переменных в критической точке положительно определен. Докажите, что после надлежащей гладкой замены зависимой переменной u и независимых переменных (х, у) функция приводится к виду u = х>2 + у>2.
9. Предположим, что второй дифференциал гладкой функции n переменных в критической точке — невырожденная квадратичная форма. Докажите, что после надлежащей гладкой замены зависимой переменной u и n независимых переменных (х, у) функция приводится к виду и = х>2>1 + . . . + х>2>k — у>2>1 — . . . — y>2>1, k + l = n.
10. Докажите, что в критической точке аналитической функции двух переменных исчезают, как правило, 6 (комплексных) точек перегиба линии уровня,
К разделу 2
11. Сколько точек сборки имеет отображение z → z>2 + εz?
12. Имеют ли точки сборки отображение (х, у) → (х>2 + ау, у>2 + bх)?
13. Докажите, что число точек сборки отображения (общего положения) сферы на плоскость четно.
14. Пусть на сфере дана функция, интеграл которой по сфере равен нулю и для которой нуль — не критическое значение. Существует ли гладкое отображение сферы на плоскость, все особенности которого — складки и которое имеет якобианом данную функцию?
15. Докажите, что отображение сферы на плоскость, все критические точки которого — складки и сборки, может иметь линией критических точек любую (непустую) гладкую кривую на сфере.
16. Предположим, что все критические точки гладкого отображения сферы на плоскость — складки и сборки и что число областей на сфере, где якобиан отображения положителен, равно а, а где он отрицателен — b. Докажите, что число сборок не меньше, чем 2 | а — b |.
17. Сопоставим каждому вектору нормали к эллипсу его конец. Докажите, что построенное отображение цилиндра на плоскость имеет четыре точки сборки.
18. Если заменить в задаче 17 эллипс несамопересекающейся кривой общего положения, то число точек сборки соответствующего отображения цилиндра на плоскость не меньше четырех.
К разделу 3
19. Рассмотрим на эллипсе функцию "расстояние от точки эллипса до фиксированной точки плоскости", Критические точки таких функций образуют поверхность в трехмерном многообразии — прямом произведении эллипса на плоскость. Сколько сборок имеет проектирование этой поверхности на плоскость? Как выглядит множество критических значений проектирования?
20. Рассмотрим в пространстве функций на окружности множество всех функций, имеющих кратные критические значения. Лежит ли эта гиперповерхность в пространстве функций односторонне или двусторонне (т. е. можно ли ее снабдить трансверсальным направлением, меняющимся непрерывно вплоть до точек самопересечения и граничных точек)?
Новая книга выдающегося математика современности Владимира Игоревича Арнольда раскрывает ещё одну сторону его многогранного таланта — создание исторических миниатюр, удивительных и по форме, и по содержанию. Простые и яркие изложения собственных воспоминаний и событий многовековой давности всегда несут долю юмора и предстают на страницах книги столь реально, что невольно чувствуешь себя их участником. И ещё одно замечательное свойство «Историй» Арнольда: они всегда поучительны — раскрытые в них человеческие качества удивительным образом перекликаются с современностью.
Cлушать музыку – это самое интересное, что есть на свете. Вы убедитесь в этом, читая книгу музыкального журналиста и популярного лектора Ляли Кандауровой. Вместо скучного и сухого перечисления фактов перед вами настоящий абонемент на концерт: автор рассказывает о 600-летней истории музыки так, что незнакомые произведения становятся близкими, а знакомые – приносят еще больше удовольствия.
Знаменитый во всем мире популяризатор науки, ученый, инженер и популярный телеведущий канала Discovery, Билл Най совершил невероятное — привил любовь к физике всей Америке. На забавных примерах из собственной биографии, увлекательно и с невероятным чувством юмора он рассказывает о том, как наука может стать частью повседневной жизни, учит ориентироваться в море информации, правильно ее фильтровать и грамотно снимать «лапшу с ушей». Читатель узнает о планах по освоению Марса, проектировании «Боинга», о том, как выжить в автокатастрофе, о беспилотных автомобилях, гениальных изобретениях, тайнах логарифмической линейки и о других спорных, интересных или неразрешимых явлениях науки. «Человек-физика» Билл Най научит по-новому мыслить и по-новому смотреть на мир.
Автор множества бестселлеров палеонтолог Дональд Протеро превратил научное описание двадцати пяти знаменитых прекрасно сохранившихся окаменелостей в увлекательную историю развития жизни на Земле. Двадцать пять окаменелостей, о которых идет речь в этой книге, демонстрируют жизнь во всем эволюционном великолепии, показывая, как один вид превращается в другой. Мы видим все многообразие вымерших растений и животных — от микроскопических до гигантских размеров. Мы расскажем вам о фантастических сухопутных и морских существах, которые не имеют аналогов в современной природе: первые трилобиты, гигантские акулы, огромные морские рептилии и пернатые динозавры, первые птицы, ходячие киты, гигантские безрогие носороги и австралопитек «Люси».
«Игра престолов» — один из самых популярных и культовых сериалов последних лет. От него невозможно оторваться, но иногда возникают вопросы: «Неужели так может быть на самом деле?» или «Как они это вообще сделали?». Что представляют собой драконы с точки зрения современной физики и биологии? Как сделать меч из валирийской стали? Почему дикий огонь столь страшен в качестве оружия? Об этом захотят узнать не только фанаты сериала, но и простые зрители.
В этой небольшой книге автор так осветил все основные разделы современного естествознания, чтобы их понял читатель, лишенный всякой специальной подготовки. Благодаря упрощениям автора, основанным на знании конкретной взаимосвязи всех явлений природы, читатель легко поймет содержание книги. Цель книги состоит в том, чтобы дать общий беглый очерк современных научных представлений о явлениях природы, показать универсальность этих представлений и их значение для человека.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.