Теория катастроф - [2]

Шрифт
Интервал

параметрах (Том утверждал, что их семь) — вопрос, до сих пор не решенный.

Я не в состоянии также обсуждать и философские или поэтические декларации Тома, сформулированные таким образом, чтобы нельзя было решить, справедливы они или нет (в стиле, типичном для средневековой науки до Декарта и Бэкона или даже Бэконов). К счастью, фундаментальные математические открытия великого тополога независимы от какой бы то ни было иррациональной философии.

Пуанкаре сказал как-то, что математики не уничтожают препятствия, мешающие им, но просто отодвигают их за границы своей науки. Отодвинем же эти специфические препятствия как можно дальше от границ науки, в область бессознательного и иррационального.

1. Особенности, бифуркации и катастрофы

Памяти М. А. Леонтовича

Первые сведения о теории катастроф появились в западной печати около 1970 г. В журналах типа "Ньюс уик" сообщалось о перевороте в математике, сравнимом разве что с изобретением Ньютоном дифференциального и интегрального исчисления. Утверждалось, что новая наука — теория катастроф — для человечества гораздо ценнее, чем математический анализ: в то время как ньютоновская теория позволяет исследовать лишь плавные, непрерывные процессы, теория катастроф дает универсальный метод исследования всех скачкообразных переходов, разрывов, внезапных качественных изменений. Появились сотни научных и околонаучных публикаций, в которых теория катастроф применяется к столь разнообразным объектам, как, например, исследования биения сердца, геометрическая и физическая оптика, эмбриология, лингвистика, экспериментальная психология, экономика, гидродинамика, геология и теория элементарных частиц. Среди опубликованных работ по теории катастроф есть исследования устойчивости кораблей, моделирования деятельности мозга и психических расстройств, восстаний заключенных в тюрьмах, поведения биржевых игроков, влияния алкоголя на водителей транспортных средств, политики цензуры по отношению к эротической литературе.

В начале семидесятых годов теория катастроф быстро сделалась модной, широко рекламируемой теорией, напоминающей универсальностью своих претензий псевдонаучные теории прошлого века.

Математические статьи основоположника теории катастроф Р. Тома были переизданы массовым тиражом в карманной серии — событие, которого не было в математическом мире со времени возникновения кибернетики, у которой теория катастроф заимствовала многие приемы саморекламы.

Вслед за панегириками теории катастроф появились и более трезвые критические работы; некоторые из них также печатались в рассчитанных на широкого читателя изданиях под красноречивыми названиями вроде "А король-то — голый". Сейчас имеется уже много статей, специально посвященных критике теории катастроф. (См., например, обзор Дж. Гуккенхеймера "Споры о катастрофах" и пародию на критику теории катастроф.)

Источниками теории катастроф являются теория особенностей гладких отображений Уитни и теория бифуркаций динамических систем Пуанкаре и Андронова.

Теория особенностей — это грандиозное обобщение исследования функций на максимум и минимум. В теории Уитни функции заменены отображениями, т. е. наборами нескольких функций нескольких переменных.

Слово "бифуркация" означает раздвоение и употребляется в широком смысле для обозначения всевозможных качественных перестроек или метаморфоз различных объектов при изменении параметров, от которых они зависят.

Катастрофами называются скачкообразные изменения, возникающие в виде внезапного ответа системы на плавное изменение внешних условий. Чтобы понять, что такое теория катастроф, нужно вначале познакомиться с элементами теории особенностей Уитни.

2. Теория особенностей Уитни

В 1955 г. американский математик Хасслер Уитни опубликовал работу "Об отображениях плоскости на плоскость", заложившую основу новой математической теории — теории особенностей гладких отображений.

Отображение поверхности на плоскость — это сопоставление каждой точке поверхности точки плоскости. Если точка поверхности задана координатами (х>1, х>2) на поверхности, а точка плоскости координатами (y>1, у>2) на плоскости, то отображение задается парой функций у>1 = f>1>1, х>2), у>2 = f>2>1, х>2). Отображение называется гладким, если эти функции гладкие (т. е. дифференцируемые достаточное число раз, например многочлены).

Отображения гладких поверхностей на плоскость окружают нас со всех сторон. Действительно, большинство окружающих нас тел ограничено гладкими поверхностями. Видимые контуры тел — это проекции ограничивающих тела поверхностей на сетчатку глаза. Приглядываясь к окружающим нас телам, например к лицам людей, мы можем изучить особенности видимых контуров.

Уитни заметил, что в случаях "общего положения"[1] встречаются особенности лишь двух видов. Все другие особенности разрушаются при малом шевелении тел или направлений проектирования, в то время как особенности этих двух видов устойчивы и сохраняются при малых деформациях отображения.

Примером особенности первого вида — она названа складкой Уитни — является особенность, возникающая при проектировании сферы на плоскость в точках экватора рис. 1). В подходящих координатах это отображение задается формулами у


Еще от автора Владимир Игоревич Арнольд
Истории давние и недавние

Новая книга выдающегося математика современности Владимира Игоревича Арнольда раскрывает ещё одну сторону его многогранного таланта — создание исторических миниатюр, удивительных и по форме, и по содержанию. Простые и яркие изложения собственных воспоминаний и событий многовековой давности всегда несут долю юмора и предстают на страницах книги столь реально, что невольно чувствуешь себя их участником. И ещё одно замечательное свойство «Историй» Арнольда: они всегда поучительны — раскрытые в них человеческие качества удивительным образом перекликаются с современностью.


Рекомендуем почитать
Ньютон. Закон всемирного тяготения. Самая притягательная сила природы

Исаак Ньютон возглавил научную революцию, которая в XVII веке охватила западный мир. Ее высшей точкой стала публикация в 1687 году «Математических начал натуральной философии». В этом труде Ньютон показал нам мир, управляемый тремя законами, которые отвечают за движение, и повсеместно действующей силой притяжения. Чтобы составить полное представление об этом уникальном ученом, к перечисленным фундаментальным открытиям необходимо добавить изобретение дифференциального и интегрального исчислений, а также формулировку основных законов оптики.


Легенда о Вавилоне

Петр Ильинский, уроженец С.-Петербурга, выпускник МГУ, много лет работал в Гарвардском университете, в настоящее время живет в Бостоне. Автор многочисленных научных статей, патентов, трех книг и нескольких десятков эссе на культурные, политические и исторические темы в печатной и интернет-прессе США, Европы и России. «Легенда о Вавилоне» — книга не только о более чем двухтысячелетней истории Вавилона и породившей его месопотамской цивилизации, но главным образом об отражении этой истории в библейских текстах и культурных образах, присущих как прошлому, так и настоящему.


Открытия и гипотезы, 2005 №11

Научно-популярный журнал «Открытия и гипотезы» представляет свежий взгляд на самые главные загадки вселенной и человечества, его проблемы и открытия. Никогда еще наука не была такой интересной. Представлены теоретические и практические материалы.


Жители планет

«Что такое на тех отдаленных светилах? Имеются ли достаточные основания предполагать, что и другие миры населены подобно нашему, и если жизнь есть на тех небесных землях, как на нашей подлунной, то похожа ли она на нашу жизнь? Одним словом, обитаемы ли другие миры, и, если обитаемы, жители их похожи ли на нас?».


Знание-сила, 2000 № 07 (877)

Ежемесячный научно-популярный и научно-художественный журнал.


Популярно о микробиологии

В занимательной и доступной форме автор вводит читателя в удивительный мир микробиологии. Вы узнаете об истории открытия микроорганизмов и их жизнедеятельности. О том, что известно современной науке о морфологии, методах обнаружения, культивирования и хранения микробов, об их роли в поддержании жизни на нашей планете. О перспективах разработок новых технологий, применение которых может сыграть важную роль в решении многих глобальных проблем, стоящих перед человечеством.Книга предназначена широкому кругу читателей, всем, кто интересуется вопросами современной микробиологии и биотехнологии.