Теория физического вакуума в популярном изложении - [5]

Шрифт
Интервал

в системе S* равна нулю. Этот результат как раз и доказывает, что кинетическая энергия инерциально движущихся тел относительна.

В геометрии существует понятие геодезической линии. Это линия соответствует кратчайшему расстоянию между двумя точками в данной геометрии. В геометрии Евклида геодезической (в дальнейшем слово линия мы будем опускать) является прямая. Поэтому уравнения движения тел отсчета надо записать в таком виде, чтобы их решения приводили к прямолинейным траекториям тел. Из механики Ньютона нам известно, что уравнения движения в этом случае запишутся в виде равенства нулю произведения массы тела на его ускорение. Это уравнения движения свободных тел. Но такого в природе не бывает! Все тела отсчета обладают массой и, следовательно, гравитационным взаимодействием. Конечно, это взаимодействие очень мало и в большинстве случаев им можно пренебречь (так обычно и поступают физики). Следовательно, понятие инерциальной системы отсчета является идеализированным. Исследуя пространство событий этих систем, мы получаем тривиальные уравнения движения и никаких уравнений поля. В этом смысле плоское пространство Евклида, образованное множеством относительных координат инерциальных систем отсчета, соответствует «абсолютной пустоте», так, как будто массы (и другие физические характеристики) тел отсчета устремились к нулю. 

1.3. Четырехмерное пространство событий и относительность времени.

Пространство событий инерциальных систем отсчета механики Ньютона трехмерно и использует три пространственных координаты х, у и z. При движении систем отсчета эти координаты зависят от времени t, которое выступает в механике Ньютона как абсолютная величина. Представления о трехмерности пространства сохранялись в физике до тех пор, пока не начались эксперименты, связанные с распространением света. Было установлено, что свет распространяется со скоростью с = 300000 км/сек.

При таких скоростях материи (или близких к ним, но меньших чем с) пространство событий становится четырехмерным, при этом время, умноженное на скорость света с образует четвертую координату Х>0 = ct дополнительную к трем координатам х, у и z. В результате механику Ньютона заменила более совершенная релятивистская механика Эйнштейна-Лоренца. Геометрия пространства событий такой механики наделено структурой псевдоевклидовой геометрии. Это плоская геометрия, геодезические которой представляют собой четырехмерные прямые линии. По этим линиям движутся тела отсчета четырехмерных инерциальных систем. Название псевдоевклидова геометрия связано с тем, что четвертая координата х>0 = ct выступает мнимой координатой по отношению к пространственным координатам х, у и z. Понятно, что четырехмерная инерциальная система отсчета является такой же идеализацией, как и трехмерная, поскольку, все тела отсчета хоть в какой-то степени взаимодействуют между собой.

Из анализа уравнений релятивистской механики (т.е. механики больших скоростей) вытекают удивительные следствия.

Во-первых, покоящееся тело отсчета обладает энергией покоя, равной произведению массы покоя m на квадрат скорости света: Е = mc>2.

Во-вторых, масса тела зависит от скорости движения и стремится к бесконечно большой величине при приближении скорости тела к скорости света.

В третьих, всякое ускоренное поступательное движение в четырехмерном пространстве представляется как вращение в плоскостях, образованных осью времени ct и координатными осями х, у и z . На рис. 3 представлена одна из плоскостей, а именно, плоскость ct - х. На этой плоскости прямые, расположенные под углом к осям х и ct, представляют собой образующие светового конуса, по которым движется свет, естественно со скоростью света. Все тела отсчета, масса покоя которых m>0 отлична от нуля, движутся внутри светового конуса, т.е. внутри сектора где расположена гиперболическая кривая.



>Рис.3. Плоскость ct-x, на которой изображены направляющие светового конуса будущего (t>0). Нерелятивисткая скорость движения вдоль оси Х вычисляется из прямоугольного треугольника через тангенс угла по следующей формуле v = x/t = ctga с.


Из рисунка видно, что скорость движения v = x/t вдоль оси х определяется через тангенс угла a, а изменение скорости сводится к вращению в плоскости ct - х.

В четвертых, длина L>0 любого объекта зависит от скорости и уменьшается с увеличением его скорости. При скорости v = с длина вдоль направления движения обращается в ноль. Например, наблюдатель, который следит за движущимся с большой скоростью шаром, увидит вместо круглого шара сплюснутый в направлении движения диск.

В пятых, время в четырехмерном пространстве становится величиной относительной и течет по-разному, в зависимости от скорости движения системы отсчета. Если астронавты в полете к далеким звездам будут двигаться в космическом корабле со скоростью, близкой к скорости света, то их время будет течь медленнее, чем на Земле.

Этот странный с житейской точки зрения вывод был неоднократно проверен экспериментально. Были измерены времена жизни неустойчивых (распадающихся на части) элементарных частиц в зависимости от скорости их движения. Оказалось, что чем ближе скорость частицы к скорости света, тем больше времени она живет.


Рекомендуем почитать
Мистер Томпкинс внутри самого себя

В книге, одним из авторов которой является известный американский физик Г. Гамов, в доступной и увлекательной форме рассказывается о достижениях на стыке физики и биологии. Данная книга рассчитана на учащихся старших классов и студентов начальных курсов университетов самых разных специальностей.


Квантовая модель атома. Нильс Бор. Квантовый загранпаспорт

Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.


Магнетизм высокого напряжения. Максвелл. Электромагнитный синтез

Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.


Охотники за нейтрино. Захватывающая погоня за призрачной элементарной частицей

Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.


Ньютон. Закон всемирного тяготения. Самая притягательная сила природы

Исаак Ньютон возглавил научную революцию, которая в XVII веке охватила западный мир. Ее высшей точкой стала публикация в 1687 году «Математических начал натуральной философии». В этом труде Ньютон показал нам мир, управляемый тремя законами, которые отвечают за движение, и повсеместно действующей силой притяжения. Чтобы составить полное представление об этом уникальном ученом, к перечисленным фундаментальным открытиям необходимо добавить изобретение дифференциального и интегрального исчислений, а также формулировку основных законов оптики.


Климатическая наука: наблюдения и модели

Ричард МурКлиматическая наука: наблюдения и модели.21.01.2010Источник: Richard K. Moore, Gglobal ResearchClimate Science: Observations versus ModelsПеревод: Арвид Хоглунд, специально для сайта "Война и Мир".Теория парниковых газов якобы ответственных за катастрофическое глобальное потепление не согласуется с фактами и является политической спекуляцией на реальной науке. Рассматривается фактическая картина современного климата по доступным данным.