Теорема века. Мир с точки зрения математики - [4]

Шрифт
Интервал

а + (b + 1) = (a + b) + 1.

А это – помимо различия в обозначениях – есть не что иное, как равенство (1), при помощи которого я только что определял сложение.

Предположим, что теорема будет справедлива для с = γ; я говорю, что она будет справедлива и для c = γ + 1; пусть, в самом деле,

(а + b) + γ = а + (b + γ);

отсюда следует

[(a + b) + γ] + l = [a + (b + γ)] + l

или в силу определения (1)

(а + b) + (γ + l) = a + (b + γ + 1) = a + [b + (γ + 1)],

а это показывает с помощью ряда чисто аналитических выводов, что теорема верна для γ + 1.

Но так как она верна для с = 1, то последовательно усматриваем, что она верна для с = 2, для с = 3 и т. д.

Коммутативность. 1. Я утверждаю, что

a + 1 = 1 + a.

Теорема, очевидно, справедлива для а = 1 путем чисто аналитических рассуждений можно проверить, что если она справедлива для а = γ, то она будет справедлива для а = γ + 1; но раз она справедлива для а = 1, то она будет справедлива и для а = 2, для а = 3 и т. д.; это выражают, говоря, что высказанное предложение доказано путем рекурренции.

2. Я утверждаю, что

a + b = b + a.

Теорема только что была доказана для b = 1; можно аналитически проверить, что если она справедлива для b = β, то она будет справедлива для b = β + 1.

Таким образом, предложение доказано путем рекурренции.

Определение умножения. Мы определим умножение при помощи равенств

a × 1 = a

a × b = [a × (b − 1)] + a. (2)

Равенство (2), как и равенство (1), заключает в себе бесчисленное множество определений; после того как дано определение а × 1, оно позволяет определить по следовательно а × 2, а × 3 и т. д.

Свойства умножения. Дистрибутивность. Я утверждаю, что

(а + b) × с = (а × с) + (b × с).

Мы проверяем аналитически справедливость этого равенства для с = 1; а потом проверяем, что если теорема справедлива для с = γ, то она будет справедлива и для с = γ + 1.

Предложение опять доказано рекурренцией.

Коммутативность. 1. Я утверждаю, что

a × 1 = 1 × a.

Теорема очевидна для а = 1.

Проверяем аналитически, что если она справедлива для а = α, то она будет справедлива и для а = α + 1.

2. Я утверждаю, что

a × b = b × a.

Теорема только что была доказана для b = 1. Аналитически проверяем, что если она справедлива для b = β, то она будет справедлива и для b = β + 1.

IV

Здесь я прерываю этот монотонный ряд рассуждений. Но именно эта монотонность и способствовала лучшему выделению того однообразного процесса, который мы находим на каждом шагу.

Этот процесс есть доказательство путем рекурренции. Сначала формулируется теорема для n = 1; потом доказывается, что если она справедлива для n − 1, то она справедлива и для n, и отсюда выводится заключение о справедливости ее для всех целых чисел.

Мы только что видели, как можно воспользоваться этим для доказательства правил сложения и умножения, т. е. правил алгебраического вычисления; это вычисление есть орудие преобразования, которое применяется в гораздо большем числе разнообразных комбинаций, чем простой силлогизм; но это орудие еще чисто аналитическое, оно не способно научить нас ничему новому. Если бы математика не имела ничего другого, она тотчас же остановилась бы в своем развитии; но она получает новое средство в том же процессе, т. е. в рассуждении путем рекурренции, и потому может непрерывно продолжать свое поступательное движение.

В каждом шаге, если его хорошенько рассмотреть, мы находим этот способ рассуждения – или в той простой форме, которую мы только что ему придали, или в форме более или менее видоизмененной.

В нем, следовательно, по преимуществу заключается математическое рассуждение, и нам следует изучить его ближе.

V

Существенная черта умозаключения путем рекурренции заключается в том, что оно содержит в себе бесчисленное множество силлогизмов, сосредоточенных, так сказать, в одной формуле.

Чтобы лучше можно было себе это уяснить, я сейчас расположу эти силлогизмы один за другим в виде некоторого каскада. Это, в сущности, – гипотетические силлогизмы.

Теорема верна для числа 1.

Если же она справедлива для 1, то она справедлива для 2.

Следовательно, она верна для 2.

Если же она верна для 2, то она верна для 3.

Следовательно, она верна для 3 и т. д.

Очевидно, что заключение каждого силлогизма служит следующему меньшей посылкой.

Большие посылки всех наших силлогизмов могут быть приведены к одной формуле:

Если теорема справедлива для n − 1, то она справедлива для n.

Таким образом, очевидно, что в рассуждении путем рекурренции ограничиваются выражением меньшей посылки первого силлогизма и общей формулы, которая в виде частных случаев содержит в себе все большие посылки.

Этот никогда не оканчивающийся ряд силлогизмов оказывается приведенным к одной фразе в несколько строк.

Теперь легко понять, почему всякое частное следствие, вытекающее из теоремы, может быть, как я изложил выше, проверено чисто аналитическим процессом.

Если, вместо того чтобы доказывать справедливость нашей теоремы для всех чисел, мы желаем обнаружить ее справедливость, например, только для числа 6, для нас будет достаточно обосновать 5 первых силлогизмов нашего последовательного ряда; если бы мы пожелали доказать теорему для числа 10, надо было бы взять их 9; для большого числа надо было бы взять их еще больше; но как бы велико ни было это число, мы всегда в конце концов его достигли бы, и аналитическая проверка была бы возможна.


Рекомендуем почитать
Как мы едим. Как противостоять вредной еде и научиться питаться правильно

Разговор о том, что в нашем питании что-то не так, – очень деликатная тема. Никто не хочет, чтобы его осуждали за выбор еды, именно поэтому не имеют успеха многие инициативы, связанные со здоровым питанием. Сегодня питание оказывает влияние на болезни и смертность гораздо сильнее, чем курение и алкоголь. Часто мы едим нездоровую еду в спешке и с трудом понимаем, как питаться правильно, что следует ограничить, а чего нужно потреблять больше. Стремление к идеальному питанию, поиск чудо-ингредиента, экстремальные диеты – за всем этим мы забываем о простой и хорошей еде.


Советский воинский долг и религия

Как коммунистическая и религиозная идеологии относятся к войне и советскому воинскому долгу? В чем вред религиозных предрассудков и суеверий для формирования морально-боевых качеств советских воинов? Почему воинский долг в нашей стране — это обязанность каждого советского человека защищать свой народ и его социалистические завоевания от империалистической агрессии? Почему у советских людей этот воинский долг становится их внутренней нравственной обязанностью, моральным побуждением к самоотверженной борьбе против врагов социалистической Родины? Автор убедительно отвечает на эти вопросы, использует интересный документальный материал.


Мир после нас. Как не дать планете погибнуть

Способны ли мы, живя в эпоху глобального потепления и глобализации, политических и экономических кризисов, представить, какое будущее нас ждет уже очень скоро? Майя Гёпель, доктор экономических наук и общественный деятель, в своей книге касается болевых точек человеческой цивилизации начала XXI века – массового вымирания, сверхпотребления, пропасти между богатыми и бедными, последствий прогресса в науке и технике. Она объясняет правила, по которым развивается современная экономическая теория от Адама Смита до Тома Пикетти и рассказывает, как мы можем избежать катастрофы и изменить мир в лучшую сторону, чтобы нашим детям и внукам не пришлось платить за наши ошибки слишком высокую цену.


Клеопатра

Последняя египетская царица Клеопатра считается одной из самых прекрасных, порочных и загадочных женщин в мировой истории. Её противоречивый образ, документальные свидетельства о котором скудны и недостоверны, многие века будоражит умы учёных и людей творчества. Коварная обольстительница и интриганка, с лёгкостью соблазнявшая римских императоров и военачальников, безумная мегера, ради развлечения обрекавшая рабов на пытки и смерть, мудрая и справедливая правительница, заботившаяся о благе своих подданных, благородная гордячка, которая предпочла смерть позору, — кем же она была на самом деле? Специалист по истории мировой культуры Люси Хьюз-Хэллетт предпринимает глубокое историческое и культурологическое исследование вопроса, не только раскрывая подлинный облик знаменитой египетской царицы, но и наглядно демонстрируя, как её образ менялся в сознании человечества с течением времени, изменением представлений о женской красоте и появлением новых видов искусства.


Малый ледниковый период. Как климат изменил историю, 1300–1850

Представьте, что в Англии растет виноград, а доплыть до Гренландии и даже Америки можно на нехитром драккаре викингов. Несколько веков назад это было реальностью, однако затем в Европе – и в нашей стране в том числе – стало намного холоднее. Людям пришлось учиться выживать в новую эпоху, вошедшую в историю как малый ледниковый период. И, надо сказать, люди весьма преуспели в этом – а тяжелые погодные условия оказались одновременно и злом и благом: они вынуждали изобретать новые технологии, осваивать материки, совершенствовать науку.


Возбуждённые: таинственная история эндокринологии. Властные гормоны, которые контролируют всю нашу жизнь (и даже больше)

Перепады настроения, метаболизм, поведение, сон, иммунная система, половое созревание и секс – это лишь некоторые из вещей, которые контролируются с помощью гормонов. Вооруженный дозой остроумия и любопытства, медицинский журналист Рэнди Хаттер Эпштейн отправляет нас в полное интриг путешествие по необычайно захватывающей истории этих сильнодействующих химикатов – от промозглого подвала девятнадцатого века, заполненного мозгами, до фешенебельной гормональной клиники двадцать первого века в Лос-Анджелесе.