Теорема века. Мир с точки зрения математики - [34]

Шрифт
Интервал

Мы видели, что координаты тел определяются дифференциальными уравнениями второго порядка, и то же самое имеет место для разностей этих координат. Это – то, что мы назвали обобщенным принципом инерции и принципом относительного движения.

Если бы расстояния этих тел определялись также дифференциальными уравнениями второго порядка, то, кажется, ум должен бы быть вполне удовлетворен. В какой мере он получает это удовлетворение и почему он им не довольствуется?

Чтобы дать себе в этом отчет, лучше всего взять простой пример. Вообразим систему, аналогичную нашей Солнечной системе, но такую, что из нее нельзя было бы видеть неподвижных звезд, не принадлежащих к этой системе, так что астрономы могли бы наблюдать только взаимные расстояния планет и Солнца, но не абсолютные долготы планет. Если мы выведем непосредственно из закона Ньютона дифференциальные уравнения, определяющие изменение этих расстояний, то эти уравнения не будут второго порядка. Я хочу сказать, что если бы, кроме закона Ньютона, были известны начальные значения этих расстояний и их производных по времени, то этого было бы достаточно для определения значений тех же расстояний для какого-нибудь последующего момента. Недоставало бы еще одного данного, и этим данным могло бы быть, например, то, что астрономы называют константой площадей.

Но здесь можно стать на две различные точки зрения; мы можем различать два рода констант. В глазах физика мир сводится к ряду явлений, зависящих единственно, с одной стороны, от начальных явлений, с другой – от законов, связывающих последующие явления с предыдущими. Если теперь наблюдение откроет нам, что некоторая величина есть константа, то нам представится выбор между двумя точками зрения.

Или мы допустим, что существует закон, требующий неизменяемости этой величины, но дело случая, что она в начальный момент имела именно такое значение, а не иное, – значение, которое она должна была потом сохранять. Такую величину можно было бы назвать тогда случайной константой.

Или, напротив, мы допустим, что существует закон природы, сообщающий этой величине именно такое значение, а не иное. Здесь мы будем иметь то, что можно назвать существенной константой.

Например, в силу законов Ньютона время обращения Земли должно быть постоянно. Но если оно равно 366 звездным суткам с дробью, а не 300 или 400, то это – результат какой-то неизвестной мне начальной случайности. Это – случайная константа. Если, напротив, показатель степени расстояния, входящий в выражение гравитационной силы, равен 2, а не 3, то это не случайно – этого требует закон Ньютона. Это – существенная константа.

Я не знаю, будет ли законно само по себе придавать какое-то значение случайности и не является ли такое разграничение искусственным; во всяком случае, пока в природе существуют тайны, оно будет применяться с широким произволом, всегда оставаясь ненадежным.

Что касается константы площадей, то мы привыкли рассматривать ее как случайную. Так ли поступили бы наши воображаемые астрономы? Если бы они имели возможность сравнивать две различные солнечные системы, то у них появилась бы идея, что эта константа может иметь различные значения; но я как раз предположил вначале, что их система изолирована и они не могли наблюдать никакого светила, не принадлежащего к их системе. В этих условиях они могли бы знать единственную константу, которая имела бы единственное, абсолютно неизменяемое значение; без сомнения, они были бы склонны рассматривать ее как константу существенную.

Выскажу попутно несколько слов в предупреждение возражений: обитатели нашего воображаемого мира не могли бы ни наблюдать, ни определить константу площадей, как это делаем мы, потому что абсолютные долготы были бы им недоступны; но это не помешало бы им скоро подметить определенную константу, которая естественно входила бы в их уравнения и которая была бы не чем иным, как тем, что мы называем константой площадей.

Но тогда бы имело место следующее. Если рассматривать константу площадей как существенную, как обусловленную законом природы, то для вычисления расстояний планет в любой момент достаточно знать начальные значения этих расстояний и их первых производных. С этой новой точки зрения расстояния будут определяться дифференциальными уравнениями второго порядка.

Однако был ли бы ум этих астрономов вполне удовлетворен? Я не думаю; прежде всего, они скоро заметили бы, что, продифференцировав свои уравнения и таким образом повысив их порядок, они привели бы их к более простой форме. В особенности они были бы поражены трудностью, связанной с симметрией. Пришлось бы допускать различные законы, смотря по тому, представляет ли совокупность планет фигуру какого-либо определенного многогранника, в частности симметричного многогранника; этого следствия можно было бы избегнуть, только рассматривая константу площадей как случайную.

Я взял довольно частный пример, вообразив астрономов, которые совсем не занимаются земной механикой и кругозор которых ограничен Солнечной системой. Но наши заключения приложимы ко всем случаям. Наша Вселенная шире по сравнению с их миром, потому что у нас есть неподвижные звезды, но она все же ограничена, и поэтому мы могли бы так же рассуждать о нашей Вселенной, взятой в целом, как эти астрономы – о своей Солнечной системе.


Рекомендуем почитать
Легенда о Вавилоне

Петр Ильинский, уроженец С.-Петербурга, выпускник МГУ, много лет работал в Гарвардском университете, в настоящее время живет в Бостоне. Автор многочисленных научных статей, патентов, трех книг и нескольких десятков эссе на культурные, политические и исторические темы в печатной и интернет-прессе США, Европы и России. «Легенда о Вавилоне» — книга не только о более чем двухтысячелетней истории Вавилона и породившей его месопотамской цивилизации, но главным образом об отражении этой истории в библейских текстах и культурных образах, присущих как прошлому, так и настоящему.


Открытия и гипотезы, 2005 №11

Научно-популярный журнал «Открытия и гипотезы» представляет свежий взгляд на самые главные загадки вселенной и человечества, его проблемы и открытия. Никогда еще наука не была такой интересной. Представлены теоретические и практические материалы.


Жители планет

«Что такое на тех отдаленных светилах? Имеются ли достаточные основания предполагать, что и другие миры населены подобно нашему, и если жизнь есть на тех небесных землях, как на нашей подлунной, то похожа ли она на нашу жизнь? Одним словом, обитаемы ли другие миры, и, если обитаемы, жители их похожи ли на нас?».


Знание-сила, 2000 № 07 (877)

Ежемесячный научно-популярный и научно-художественный журнал.


Меч и Грааль

Взыскание Святого Грааля, — именно так, красиво и архаично, называют неповторимое явление средневековой духовной культуры Европы, породившее шедевры рыцарских романов и поэм о многовековых поисках чудесной лучезарной чаши, в которую, по преданию, ангелы собрали кровь, истекшую из ран Христа во время крестных мук на Голгофе. В некоторых преданиях Грааль — это ниспавший с неба волшебный камень… Рыцари Грааля ещё в старых текстах именуются храмовниками, тамплиерами. История этого католического ордена, основанного во времена Крестовых походов и уничтоженного в начале XIV века, овеяна легендами.


Популярно о микробиологии

В занимательной и доступной форме автор вводит читателя в удивительный мир микробиологии. Вы узнаете об истории открытия микроорганизмов и их жизнедеятельности. О том, что известно современной науке о морфологии, методах обнаружения, культивирования и хранения микробов, об их роли в поддержании жизни на нашей планете. О перспективах разработок новых технологий, применение которых может сыграть важную роль в решении многих глобальных проблем, стоящих перед человечеством.Книга предназначена широкому кругу читателей, всем, кто интересуется вопросами современной микробиологии и биотехнологии.