Теорема века. Мир с точки зрения математики - [24]
«Да, – скажете вы на это, – единичный опыт недостаточен, так как он дает только одно уравнение со многими неизвестными; но когда я произведу достаточное количество опытов, я буду иметь достаточно уравнений, чтобы вычислить все мои неизвестные».
Но недостаточно знать высоту грот-мачты, – возражаю я, – чтобы вычислить возраст капитана. Определив все размеры корпуса корабля, вы будете иметь много уравнений, но все-таки вы не узнаете этого возраста. Все ваши измерения, относящиеся к частям корабельного корпуса, не могут обнаружить вам ничего, кроме того, что касается этих частей. Точно так и ваши опыты, как бы многочисленны они ни были: указывая только на взаимные отношения тел, они не скажут нам ничего о взаимных отношениях различных частей пространства.
7. Вы скажете, что если опыты относятся к телам, то они относятся по крайней мере к геометрическим свойствам тел.
Но, прежде всего, – что вы понимаете под геометрическими свойствами тел? Допустим, что здесь речь идет об отношениях тел к пространству; но эти свойства недоступны опытам, которые касаются только взаимного отношения между телами. Одного этого замечания было бы достаточно, чтобы показать, что речь идет о другом.
Постараемся прежде всего понять смысл выражения: геометрические свойства тел. Когда я говорю, что тело слагается из нескольких частей, я думаю, что этим я не высказываю суждения о геометрическом свойстве; это осталось бы справедливым, даже если бы я условился пользоваться неподходящим названием точек для наименьших рассматриваемых мною частей.
Когда я говорю, что такая-то часть такого-то тела находится в соприкосновении с такой-то частью другого какого-нибудь тела, я высказываю предложение, касающееся взаимных отношений этих двух тел, но не их отношений к пространству.
Я думаю, вы согласитесь со мной, что здесь мы имеем дело не с геометрическими свойствами; по крайней мере, вы, наверно, согласитесь, что эти свойства независимы от каких бы то ни было понятий метрической геометрии.
После этого представим себе, что имеется твердое тело, состоящее из восьми тонких железных стержней ОА, ОВ, ОС, ОD, ОE, ОF, OG и ОН, соединенных вместе своими концами О.
Пусть, с другой стороны, мы имеем второе твердое тело, например кусок дерева, на котором отметим чернилами три маленьких пятнышка; я назову их αβγ.
Пусть мы убедились затем, что можно привести в соприкосновение αβγ с AGO (т. е. одновременно α с А, β с G и γ с О), потом – что последовательно можно привести в соприкосновение αβγ с ВGO, CGO, DGO, EGO, FGO, затем с АНО, ВHО, СHО, DНО, ЕНО, FHO, потом αγ последовательно с AВ, ВС, CD, DE, EF, FA.
Вот опытные факты, в которых можно удостовериться, не имея наперед никакого знания о форме или метрических свойствах пространства. Они никоим образом не относятся к «геометрическим свойствам тел». И эти факты будут невозможны, если тела, над которыми экспериментируют, движутся, следуя группе такой же структуры, как группа Лобачевского (я хочу сказать – по законам движения твердых тел в геометрии Лобачевского). Значит, достаточно этих фактов, чтобы убедиться, что тела эти движутся, следуя евклидовой группе, или, по крайней мере, что они движутся не в соответствии с группой Лобачевского.
Что эти факты совместимы с евклидовой группой, легко убедиться: стоит только представить себе αβγ неизменяемым твердым телом нашей обычной геометрии, имеющим форму прямоугольного треугольника, а точки A, В, С, D, E, F, G, Н – вершинами многогранника, образованного двумя правильными шестигранными пирамидами нашей обыкновенной геометрии, имеющими общим основанием ABCDEF, а вершинами – одна G, другая Н.
Предположим теперь, что вместо предыдущих фактов мы наблюдали, что можно опять-таки наложить αβγ последовательно на AGO, BGO, CGO, DGO, EGO, FGO, АНО, ВHО, СHО, DHО, EHО, FHО, а потом можно αβ (отнюдь не αγ) наложить последовательно на АВ, ВС, CD, DE, EF и FA.
Вот опытные факты, которые можно было бы наблюдать, если бы неевклидова геометрия была правильна и если бы αβγи OABCDEFGH были неизменяемыми твердыми телами: первое – в форме прямоугольного треугольника, а второе – в форме двойной правильной шестигранной пирамиды соответствующих размеров.
Итак, эти новые факты невозможны, раз тела движутся, следуя евклидовой группе; но они стали бы возможны, если бы допустить, что тела движутся подобно группе Лобачевского. Их было бы, следовательно, достаточно (если бы они наблюдались), чтобы убедиться, что рассматриваемые тела не движутся, следуя евклидовой группе.
Таким образом, не вводя никакой гипотезы о форме и природе пространства, об отношениях тел к пространству, не приписывая телам никакого геометрического свойства, я нашел факты, позволяющие мне показать, что доступные опытам тела в одном случае движутся, следуя структуре группы Евклида, в другом – следуя структуре группы Лобачевского.
Однако нельзя сказать, что первый ряд фактов может составить опыт, доказывающий, что пространство является евклидовым, а второй – опыт, доказывающий, что пространство неевклидово.
В самом деле, можно было бы представить себе тела, движущиеся таким образом, что они осуществляют второй ряд фактов. Доказательством служит то, что любой механик мог бы их построить, если бы он захотел взять на себя этот труд и если бы придавал этому значение. Однако из этого вы не заключили бы, что пространство неевклидово, тем более что обыкновенные твердые тела продолжали бы существовать и тогда, когда механик построил бы странные тела, упомянутые мною: так что пришлось бы даже заключить, что пространство является одновременно евклидовым и неевклидовым.
Петр Ильинский, уроженец С.-Петербурга, выпускник МГУ, много лет работал в Гарвардском университете, в настоящее время живет в Бостоне. Автор многочисленных научных статей, патентов, трех книг и нескольких десятков эссе на культурные, политические и исторические темы в печатной и интернет-прессе США, Европы и России. «Легенда о Вавилоне» — книга не только о более чем двухтысячелетней истории Вавилона и породившей его месопотамской цивилизации, но главным образом об отражении этой истории в библейских текстах и культурных образах, присущих как прошлому, так и настоящему.
Научно-популярный журнал «Открытия и гипотезы» представляет свежий взгляд на самые главные загадки вселенной и человечества, его проблемы и открытия. Никогда еще наука не была такой интересной. Представлены теоретические и практические материалы.
«Что такое на тех отдаленных светилах? Имеются ли достаточные основания предполагать, что и другие миры населены подобно нашему, и если жизнь есть на тех небесных землях, как на нашей подлунной, то похожа ли она на нашу жизнь? Одним словом, обитаемы ли другие миры, и, если обитаемы, жители их похожи ли на нас?».
Взыскание Святого Грааля, — именно так, красиво и архаично, называют неповторимое явление средневековой духовной культуры Европы, породившее шедевры рыцарских романов и поэм о многовековых поисках чудесной лучезарной чаши, в которую, по преданию, ангелы собрали кровь, истекшую из ран Христа во время крестных мук на Голгофе. В некоторых преданиях Грааль — это ниспавший с неба волшебный камень… Рыцари Грааля ещё в старых текстах именуются храмовниками, тамплиерами. История этого католического ордена, основанного во времена Крестовых походов и уничтоженного в начале XIV века, овеяна легендами.
В занимательной и доступной форме автор вводит читателя в удивительный мир микробиологии. Вы узнаете об истории открытия микроорганизмов и их жизнедеятельности. О том, что известно современной науке о морфологии, методах обнаружения, культивирования и хранения микробов, об их роли в поддержании жизни на нашей планете. О перспективах разработок новых технологий, применение которых может сыграть важную роль в решении многих глобальных проблем, стоящих перед человечеством.Книга предназначена широкому кругу читателей, всем, кто интересуется вопросами современной микробиологии и биотехнологии.