Темная сторона материи. Дирак. Антивещество - [6]
Еще один важный принцип, следовавший из теории относительности и оказавший серьезное влияние на квантовую теорию, — принцип эквивалентности массы и энергии. В релятивистской теории масса тела зависит от системы отсчета, она увеличивается вместе со скоростью и тяготеет к бесконечности, когда скорость тела приближается к скорости света. Соотношение между массой и общей энергией тела выражается знаменитым уравнением Эйнштейна: Е = mc>2. Оно описывает эквивалентность массы и энергии и означает, что излучение или взаимодействие, то есть энергия, могут переходить в массу (в частицы), и наоборот, что частицы (масса) могут разрушаться, производя энергию. Это уравнение сыграло огромную роль
Дирак в учебной аудитории.
Поль Дирак (четвертый слева) с коллегами во время VII Сольвеевского конгресса, который был организован в 1933 году и посвящен структуре и свойствам атомного ядра. в открытии взаимодействия излучения с веществом в рамках квантовой теории. Дирак стал первым ученым, сумевшим логично соединить релятивистскую теорию с квантовой моделью. Постулирование неинерциальных систем отсчетов привело Эйнштейна к разработке общей теории относительности, он опубликовал ее в 1916 году.
Время, в которое происходит какое-либо событие, так же как и длина предмета, зависят от инерциальной системы отсчета, в которой они измеряются. В свете теории относительности эти эффекты выражаются следующими уравнениями:
Δt = γΔt>0; L = L>0/γ
где Δt>0 и L>0 означают измеряемые время и длину в движущейся системе отсчета, а Δt и L показатели, измеряемые в неподвижной системе. Член уравнений у, называемый «фактором Лоренца», выражается так:
γ = 1/(√(1-(v/c)2)
В обычной жизни скорость предметов (V) слишком мала по отношению к скорости света (с). В этой ситуации фактор Лоренца практически равен 1. Таким образом, нет никакой разницы между длиной или временным интервалом, измеряемыми разными наблюдателями. Принципиально иная ситуация наблюдается в субатомном мире, где скорости сопоставимы со скоростью света. Фактор у там значительно больше 1, что влечет за собой растяжение времени (Δt > Δt>0 и сокращение длины (L < L>0). Данные эффекты хорошо заметны в случае мюонов. Эти элементарные частицы образуются, когда космические лучи (лучи из внешнего пространства) проникают в земную атмосферу. Как показано на схеме, мюоны появляются приблизительно на высоте 15 км от поверхности Земли. В среднем они распадаются за 2·10>-6 секунд, если измерять время в их собственной системе. В механике Ньютона мюон, перемещаясь со скоростью, близкой к скорости света, мог пройти расстояние в 600-700 м до своего распада и, следовательно, никогда не мог достигнуть земной поверхности. Однако значительное количество мюонов достигало земли. Как такое возможно? Теория относительности объясняет данное явление. В инерциальной системе Земли средняя жизнь мюонов приблизительно в 20 раз дольше, чем в их собственной системе. Это означает, что мюон может преодолеть расстояние в 15 км (измеряемых в земной системе), совпадающее с толщиной атмосферы, через которую он должен пройти до своего распада на земной поверхности. Теория относительности предлагает похожее объяснение сокращения длины. В системе мюона в состоянии покоя толщина атмосферы значительно меньше, она уменьшается до 600-700 м (то самое расстояние, которое мюон проходит за свою среднюю жизнь, измеряемую в его собственной системе).
Второй революцией в области физики, имевшей еще более серьезные последствия, нежели теория относительности, стало рождение квантового мира. Квантовая теория позволила объяснить поведение субатомного мира. Применение законов механики и электромагнетизма к таким системам было невозможно, все расчеты полностью опровергались результатами опытов.
В конце XIX века произошли три поразительных и неожиданных открытия; пришлось ждать многие годы, прежде чем удалось понять и объяснить их благодаря рождению и развитию квантовой теории. Эти открытия ознаменовали начало новой эры в физике, называемой с тех пор «современной физикой». Первым из них стало открытие в 1895 году икс-излучения немецким ученым Вильгельмом Рентгеном (1845-1923), которое было способно проходить сквозь предметы и позволяло получать изображение костей. Открытие вызвало большой энтузиазм, и Х-лучи стали использовать, не поняв их природы. В следующем 1896 году французский физик Анри Беккерель (1852-1908) случайно открыл новый тип излучения — радиоактивное излучение, понимание которого требовало глубоких знаний о внутренней структуре вещества. Наконец, в 1898 году британец Джозеф Джон Томсон (1856-1940) открыл электроны, носители электрического заряда и главные составляющие вещества. Три данных открытия, вместе с многолетними исследованиями Макса Планка (1858-1947) излучения черного тела, стали почвой, на которой взросла несколькими годами позже новая революционная квантовая теория.
Первая рентгенограмма, сделанная Рентгеном. Снимок руки его жены.
Годом рождения квантовой теории принято считать 1900 год: именно тогда Макс Планк опубликовал статью об излучении абсолютно черного тела. Классическая теория излучения не позволяла объяснить результаты экспериментов при высоких частотах. Планк смог дать приемлемое объяснение результатам опытов с помощью следующей гипотезы:
«Время идет не совсем так, как думаешь» — так начинается повествование шведской писательницы и журналистки, лауреата Августовской премии за лучший нон-фикшн (2011) и премии им. Рышарда Капущинского за лучший литературный репортаж (2013) Элисабет Осбринк. В своей биографии 1947 года, — года, в который началось восстановление послевоенной Европы, колонии получили независимость, а женщины эмансипировались, были также заложены основы холодной войны и взведены мины медленного действия на Ближнем востоке, — Осбринк перемежает цитаты из прессы и опубликованных источников, устные воспоминания и интервью с мастерски выстроенной лирической речью рассказчика, то беспристрастного наблюдателя, то участливого собеседника.
«Родина!.. Пожалуй, самое трудное в минувшей войне выпало на долю твоих матерей». Эти слова Зинаиды Трофимовны Главан в самой полной мере относятся к ней самой, отдавшей обоих своих сыновей за освобождение Родины. Книга рассказывает о детстве и юности Бориса Главана, о делах и гибели молодогвардейцев — так, как они сохранились в памяти матери.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
Поразительный по откровенности дневник нидерландского врача-геронтолога, философа и писателя Берта Кейзера, прослеживающий последний этап жизни пациентов дома милосердия, объединяющего клинику, дом престарелых и хоспис. Пронзительный реализм превращает читателя в соучастника всего, что происходит с персонажами книги. Судьбы людей складываются в мозаику ярких, глубоких художественных образов. Книга всесторонне и убедительно раскрывает физический и духовный подвиг врача, не оставляющего людей наедине со страданием; его самоотверженность в душевной поддержке неизлечимо больных, выбирающих порой добровольный уход из жизни (в Нидерландах легализована эвтаназия)
Автор этой документальной книги — не просто талантливый литератор, но и необычный человек. Он был осужден в Армении к смертной казни, которая заменена на пожизненное заключение. Читатель сможет познакомиться с исповедью человека, который, будучи в столь безнадежной ситуации, оказался способен не только на достойное мироощущение и духовный рост, но и на тшуву (так в иудаизме называется возврат к религиозной традиции, к вере предков). Книга рассказывает только о действительных событиях, в ней ничего не выдумано.
У меня ведь нет иллюзий, что мои слова и мой пройденный путь вдохновят кого-то. И всё же мне хочется рассказать о том, что было… Что не сбылось, то стало самостоятельной историей, напитанной фантазиями, желаниями, ожиданиями. Иногда такие истории важнее случившегося, ведь то, что случилось, уже никогда не изменится, а несбывшееся останется навсегда живым организмом в нематериальном мире. Несбывшееся живёт и в памяти, и в мечтах, и в каких-то иных сферах, коим нет определения.