Технологии программирования - [10]
Методология блочно-иерархического подхода базируется на трех концепциях: разбиения и локальной оптимизации, абстрагирования, повторяемости.
Концепция разбиения позволяет сложную задачу проектирования объекта или системы свести к решению более простых задач с учетом их взаимосвязи.
Локальная оптимизация подразумевает улучшение параметров внутри каждой простой задачи.
Абстрагируемость заключается в построении моделей, отражающих только значимые в данных условиях свойства объектов.
Повторяемость — в использовании существующего опыта проектирования.
Блочно-иерархический подход позволяет на каждом уровне решать задачи приемлемой сложности. Разбиение на блоки должно быть таким, чтобы документация на любом уровне была обозрима и воспринимаема одним человеком.
Главным недостатком блочно-иерархического подхода является то, что на верхних уровнях имеют дело с неточными моделями объекта, и решения принимаются в условиях недостаточной информации. Следовательно, при этом подходе высока вероятность проектных ошибок.
1.4. ОБЩЕСИСТЕМНЫЕ ПРИНЦИПЫ СОЗДАНИЯ ПРОГРАММ
При создании и развитии программного обеспечения (ПО) рекомендуется применять следующие общесистемные принципы:
1) принцип включения, предусматривающий, что требования к созданию, функционированию и развитию ПО определяются со стороны более сложной, включающей его в себя системы;
2) принцип системного единства, состоящий в том, что на всех стадиях создания, функционирования и развития ПО его целостность будет обеспечиваться связями между подсистемами, а также функционированием подсистемы управления;
3) принцип развития, предусматривающий в ПО возможность его наращивания и совершенствования компонентов и связей между ними;
4) принцип комплексности, заключающийся в том, что ПО обеспечивает связанность обработки информации как отдельных элементов, так и всего объема данных в целом на всех стадиях обработки;
5) принцип информационного единства, т. е. во всех, подсистемах, средствах обеспечения и компонентах ПО используются единые термины, символы, условные обозначения и способы представления;
6) принцип совместимости, состоящий в том, что язык, символы, коды и средства программного обеспечения согласованы, обеспечивают совместное функционирование всех подсистем и сохраняют открытой структуру системы в целом;
7) принцип инвариантности, предопределяющий, что подсистемы и компоненты ПО инвариантны к обрабатываемой информации, т. е. являются универсальными или типовыми.
1.5. ОСОБЕННОСТИ ПРОГРАММНЫХ РАЗРАБОТОК
Томас Кун в 1977 г. определил термин «парадигма» как свод норм научного мышления. Парадигма — это правило (modus operandi) развития научного знания. Оно в течение определенного времени дает научному сообществу модель постановки проблем и их решений.
Когда та или иная методология применяется во время стадии кодирования (реализации), очень часто ее называют парадигмой программирования — способом мышления в программировании.
В программировании существуют различные концепции языков (парадигмы), которые при написании программ могут приводить как к одним и тем же, так и радикально различным подходам. Более того, для ряда языков необходим «свой» тип мышления, особые технологии разработки, особая школа обучения. Большинство программистов используют в работе один-два языка программирования в рамках одной парадигмы. Иногда программисту бывает трудно понять чью-то программу, реализованную в непривычной для него парадигме. В противовес изменению цели проекта под используемый язык в ряде проектных случаев рационально избрать иной язык программирования.
Приемы и способы программирования конкретного программиста определяются используемым языком. Часто в стороне остаются альтернативные подходы к цели, а следовательно, не используются оптимальные решения в выборе парадигмы, соответствующей решаемой задаче. Ниже дан список основных парадигм программирования вместе с присущими им видами абстракций:
— процедурно-ориентированные — алгоритмы;
— объектно-ориентированные — классы и объекты;
— логически-ориентированные — цели, выраженные в исчислении предикатов;
— ориентированные на правила — правила «если…, то…»;
— ориентированные на ограничения — инвариантные соотношения;
— параллельное программирование — потоки данных. Существуют и другие парадигмы. Почему же их столько? Отчасти потому, что программирование — сравнительно новая
дисциплина, а отчасти — из-за желания людей решать разные задачи. Кроме того, наиболее популярная в данный момент компьютерная архитектура не является единственной. В настоящее время проводится большое число экспериментов с машинами, имеющими нестандартные архитектуры, многие из которых рассчитаны на применение других парадигм программирования, например числа Фибоначчи. Общая природа цифровых машин позволяет с большей или меньшей эффективностью моделировать одну архитектуру с помощью другой. Из архитектур наиболее удачны те, в которых за счет аппаратуры и программного обеспечения достигнута наивысшая скорость и простота использования.
Невозможно назвать какую-либо парадигму наилучшей во всех областях практического применения. Например, для проектирования баз знаний более пригодна парадигма, ориентированная на правила. Объектно-ориентированная парадигма является наиболее приемлемой для широкого круга задач, связанных с большими промышленными системами, в которых основной проблемой является сложность.