Свет невидимого - [46]

Шрифт
Интервал

Итак, вы, конечно, поняли, что реакцию водорода с хлором можно проводить, лишь соблюдая многие предосторожности. Но самое главное, чтобы на реакционную смесь ненароком не попал луч света. В темноте же — спокойно смешивайте эти газы — реакция не пойдет.

Взаимодействие водорода с хлором — далеко не единственный пример реакций, протекающих под действием света. Каждый химик без труда вспомнит много таких реакций: разложение соединений серебра с галогенами (процесс, лежащий в основе фотографии), хлорирование многих органических соединений, наконец, важнейший из химических процессов, протекающих в природе, — процесс фотосинтеза, свершающееся в глубинах растительных клеток превращение углекислоты и воды в углеводы, процесс, на котором основано существование всего живого на нашей планете.

Ничего загадочного в действии света на эти реакции нет. Вот хотя бы та же реакция взаимодействия водорода с хлором.

Оба этих газа двухатомны — молекулы их содержат по два атома: H>2 и Cl>2. Именно поэтому взаимодействовать друг с другом они не собираются: водород прочно соединен с другим атомом водорода, и в молекуле хлора оба атома вполне довольны друг дружкой.

Но вот в смесь этих газов попал квант света. Натолкнувшись на молекулу хлора, он разбивает ее на части — два отдельных атома Cl, каждый из которых, не имея партнера, обладает большим стремлением к взаимодействию. Поэтому такие одиночные атомы хлора буквально «вгрызаются» в молекулы водорода: Cl + H>2 = HCl + H. Теперь уже бесприютным остался атом водорода, стремящийся приобрести себе партнера еще сильнее, чем одиночный атом хлора. Водород-одиночка находит приятеля в первой же молекуле хлора, которая столкнется с ним: H + Cl>2 = HCl + Cl. И снова остался без пары атом хлора, который реагирует с молекулой водорода. И так далее. И так далее. И так далее… 150 тысяч раз. Потому что один квант света, попавший в смесь водорода и хлора, может привести к образованию 150 000 молекул хлористого водорода.

Понятно теперь, почему не стоит выставлять без соблюдения всех правил предосторожности на свет смесь H>2 и Cl>2?

Как ни многообразны реакции, протекающие под действием света, число их не сопоставимо с количеством известных нам химических соединений. Это понятно, так как энергия, которую несет на себе квант видимого света, сравнительно невелика. Этот квант может воздействовать на молекулу лишь с довольно слабой химической связью. Кванты видимого света можно сравнить с теннисными мячиками, ударяющимися о каменную стенку. Повредить штукатурку они еще могут, да и то, если она плохо заделана. Но большого вреда, конечно же, не нанесут.

Другое дело, если по стене стрелять из винтовки или даже артиллерийского орудия. Так вот, если кванты видимого света — мячики, то кванты рентгеновского или радиоактивного излучения — пули и артиллерийские снаряды.

Сравнение радиоактивного излучения с пулями и снарядами, надо сказать, весьма емкое. Альфа-частицы или гамма-кванты, попадая в молекулу химического соединения, причиняют ей тяжелейшие разрушения. Молекула попросту разлетается на осколки, которые сами по себе уже являются новыми соединениями. Кроме того, осколки охотно вступают во взаимодействие друг с другом, что еще больше расширяет круг образующихся при этом соединений.

Вот и появился третий — после нагревания и электрического тока — метод воздействия на реакционную смесь. Метод, не обладающий недостатками, присущими первым двум, но сочетающий в себе все их достоинства и плюс еще много примечательных черт, свойственных только ему.

Сейчас трудно установить, кого первым осенила идея применить радиоактивные лучи для того, чтобы возбудить химическую реакцию. А может быть, эта идея посетила одновременно нескольких ученых? Скорее всего, дело обстояло именно так. Потому что даже открытие радиоактивности произошло благодаря химическому действию радиоактивного излучения на оказавшуюся случайно неподалеку фотографическую пластинку: попадая на фотоэмульсию, радиоактивные лучи разрушают молекулы галогенидов серебра. Так что догадываться о химическом действии излучения могли многие исследователи радиоактивности.

Итак, родился новый раздел химии — радиационная химия. Велико искушение назвать радиационную химию наукой будущего. Но это заманчивое определение здесь не подходит. Радиационная химия — наука настоящего. И если говорят о блистательном будущем этой науки, то только потому, что ожидают ее действительно великие свершения.

Ну а физики, довольны ли они? Сверх всякой меры! Отныне радиоактивная «зола» реакторов становится ценнее золота, ценнее любого благородного металла. Что — золото? Оно безжизненно. А с помощью «золы» можно вызвать сотни, тысячи самых неожиданных превращений. А главное, теперь никто не сможет упрекать физиков в том, что они не полностью используют энергию атомного ядра, высвобождающуюся в реакторе.


* * *

Нечего и думать о том, чтобы даже просто перечислить все осуществленные до настоящего времени радиационно-химические превращения. Их тысячи, а быть может, и десятки тысяч. Придется назвать лишь самые важные. Посудите, легко ли это сделать? Ведь каждый из ученых, исследующих какой-либо процесс, считает, что его реакция наверняка самая важная!


Еще от автора Юрий Яковлевич Фиалков
Как там у вас, на Бета-Лире?

Книга о проблемах космохимии, о современном уровне знаний в этой науке и ее перспективах.


На байдарке

Данная книга уже много лет, как стала классикой у байдарочников, причем люди, далекие от водного туризма ее тоже читают с удовольствием.


Девятый знак

Сборник очерков, посвящённых важнейшим проблемам современной химии. Для старшего школьного возраста.Данная книга является переработанным и дополненным вариантом книги «Оповідання з хімії» того же автора, вышедшей в 1960 году в издательстве «Радянська школа» на украинском языке.


Рекомендуем почитать
Паровоз

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Экологическое воспитание детей 5-6 лет

В данном методическом пособии, разработанном в соответствии с ФГТ, представлена непосредственно образовательная деятельность (НОД) по экологическому воспитанию детей 5-6 лет. Особое внимание уделено диагностике педагогического процесса по блокам «Растения», «Животные», «Человек», «Неживая природа». Широко представлена познавательно-исследовательская деятельность Пособие адресовано страшим воспитателям и педагогам ДОУ, родителям и гувернерам.


Мозаика из круп и семян

Используя различные крупы, а также семена овощей, фруктов, цветов, можно изготавливать чудесные оригинальные аппликации, панно, открытки к празднику.


Горизонты техники для детей, 1964 №11

Польский ежемесячный научно-популярный журнал для детей.


Горизонты техники для детей, 1964 №10

Польский ежемесячный научно-популярный журнал для детей.


Первоначала вещей

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.